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1. Introduction 

 The 6-year phase IX of the Japanese Antarctic Research Project 
began in the 2016–17 austral summer with the main scientific 
theme of “Investigation of changes in the Earth system from 
Antarctica”. This project uses the Japan Meteorological 
Agency’s Non-Hydrostatic Model (JMA-NHM; Saito et al., 
2006) for weather prediction over the entire Antarctic continent 
to support the activities of the Japanese Antarctic Research 
Expedition (JARE). This article describes the numerical 
prediction system and preliminary results. 

2. Numerical prediction system 
The numerical prediction system is established based on the 

JMA-NHM with several modifications, as described in 
Hashimoto et al. (2016, 2017), to better represent the 
meteorological processes over the ice sheet, since the original 
model was fitted to mid-latitude environments. 

The computational domain is 6096 km × 5664 km wide and its 
horizontal resolution is 6 km (1016 x 944 grid cells). The 
standard latitude and longitude are at 80.00 oS and the prime 

meridian, respectively, in the polar stereographic projection. The 
lower left point of the domain is located at 54.63 oS, 132.47 oW 
(Fig. 1). The top height of the domain is 22 km. There are 50 
layers in the vertical direction, increasing from 40 m thick at the 
surface to 886 m at the top in a terrain-following coordinate 
system. The integration time is 42 h, with a timestep of 15 s. The 
radiative process are computed every 15 min at a horizontal grid 
spacing of 12 km. The initial and boundary conditions are 
obtained from the JMA’s global forecast. The model topography 
is based on the 5-km-mesh surface elevation data from the digital 
elevation model of Antarctica provided by Le Brocq et al. 
(2010).  

The simulation is performed twice a day starting at 0900 or 
2100 SYOT (UTC+3), corresponding to the forecast time FT = 6 
h in the JMA’s global forecast starting at 0300 or 1500 SYOT, 
respectively. Boundary conditions are given every 6 h. Figure 2 
shows the schedule and data flow for the prediction starting at 
0900 SYOT. 
  Computations are run on the HITACHI SR24000 Model XP1 
supercomputer at the National Institute of Polar Research (NIPR). 
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Fig. 1. Computational domains of the weather model (white line) 
and the test-bed system (green broken line). The gray broken 
line shows the CloudSat orbit corresponding to Fig. 5. 
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Fig. 4 Observed and predicted (a) surface wind speed and (b) 
surface air temperature. 
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Fig. 5 Cloud reflectivity (a) observed by CloudSat Cloud 
Profiling Radar on 29 December 2016 along the orbit shown in 
Fig. 1 and (b) simulated by Joint Simulator from output from the 
JMA-NHM. 
 

Each job runs with 320 Multi Processor Interface (MPI, 20 MPI 
x 16 nodes) and finishes in about 2 h. This costs 23,360 
node-hours/year (16 nodes x 2 h x 2 runs x 365 days). Each run 
needs 90.4 GB of free disk space for input/output operation (Fig. 
3). For archiving the data, including vertical profiles above 
observation sites and plotted graphs for each simulation, the data 
size is 81.5 GB/run, which equals to 59.5 TB/year. Excluding the 
three-dimensional from the archive reduces this to 4.0 TB/year. 
A test-bed system is also operated once a day with a smaller 
domain (Fig. 1) at the Meteorological Research Institute in 
parallel with the main system as a backup and for testing for 
improvement of the system in future. In the next section, we 
present preliminary results from the test-bed system. 

3. Preliminary results from test-bed system 
Figure 4 shows the observed and predicted results for surface 

wind speed and surface air temperature from 22 December 2016 
to 15 February 2017. Wind speeds of >10 m s-1 were observed in 
several storm events accompanied by synoptic-scale 
perturbations (Fig. 4a). The model predicted these winds well. 
On the other hand, in the absence of considerable synoptic scale 
forcing, during the first couple of weeks, the model 
over-predicted the wind speed, which was mostly < 2 m s-1. The 
model tended to underestimate surface air temperature 
throughout most of the period (Fig. 4b). Local air circulation near 
Syowa station is likely to be influenced by coastal topography. 
These results indicate that it is difficult for a model with a 
horizontal resolution of several kilometers to precisely predict 
the transport of heat and momentum by local circulation. Figure 
5 shows reflectivity at 1400 on 29 December 2016 observed by 
CloudSat Cloud Profiling Radar (CPR) and simulated by the 
Joint-Simulator (Hashino et al. 2013) from the output from the 
JMA-NHM. Both observations and the model consistently 
detected cloud systems over the Antarctic Ocean and over the 
slope of the Antarctic ice sheet. 

4. Summary 
A numerical weather prediction system was established based 

on the JMA-NHM to support the activities of JARE in Antarctica 
and for performance evaluation. Comparisons between 
observations and model predictions of local weather at Syowa 
station and vertical cross-sections of cloud systems agreed well. 
Further validation and improvement of the model will be the 
basis of future work. 
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