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The well-known inefficiencies and numerical problems in numerical weather
prediction associated with the convergence of meridians and the polar sin-
gularies of a latitude-longitude-based grid system have spurred the develop-
ment of polyhedron-based alternative grids, such the cubed sphere and the
(triangular-gridded) icosahedron. Moreover, except at the vertices, the con-
tinuous mappings for these configurations can be made perfectly conformal
(angle preserving), which substantially simplifies the adaptation of existing
grid-based regional models to these global geometries. However, the un-
avoidable vertex singularities on continuous polyhedral grids still remain too
strong to avoid severe numerical difficulties for any model based on spatial
finite differencing. “Oversetting” is a remedy that preserves smooth grid
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Figure 1: Detail of junction of three square map panels of the physical solution domain (blue grids)
and their extrapolation (orange) that enable oversets for consistent blending of model solutions each time
step. The strong mapping singularities are expelled from the physical portion of the grid, leaving only the
very weak ‘branch point’ singularities (indicated as small circles) at the edges separating one map panels
from its paired neighbors

1With support from National Science Foundation grant ATM-0739518.
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continuity across the middle sections of each edge of the original generating
polyhedron, but which relinquishes continuity in the vicinity of each vertex
in favor of artificially grafted smooth replacements and extensions of the grid
there to provide a region of self-overlapping that is free of strong map sin-
gularies. Oversetting requires instead a frequent interpolation and merging
of the locally duplicated solutions. A purely localized disfigurement of the
grid in this way, however carefully smoothed and blended, cannot preserve
the desirable property of conformality.

We have developed new techniques that do enable a globally consistent
and perfectly conformal polyhedral mapping to be constructed with the over-
sets automatically supplied in the regions where there would otherwise be
vertex singularities (Fig. 1). The methods are based on the construction of
complex analytic functions that involve Riemann surfaces where the inverse
mapping (sphere to polyhedron) is at least two-valued. Moreover, the tech-
nique is capable of an immediate and potentially valuable extension (e.g.,
Fig. 2) to smooth mappings no longer constrained to correspond to convex

polyhedra, and which enables the resolution of the generated grid to possess
multiple regions of locally enhanced resolution. Such configurations suggest
more unified alternatives to the traditional separation of models for global,
regional and various further nested tasks of operational models.
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Figure 2: The Riemann surface solution showing a junction of map panels (blue grids) and their
extrapolation (orange) to a region from which consistent oversets of the grid can be created. This case,
with five square map panels meeting, no longer corresponds to any convex polyhedron, but configurations
of this kind can be exploited to provide enhanced resolution at selected geographical locations of a single
unified global grid.
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1. Introduction 
  The Global Spectral Atmospheric Model (GSAM) of the Japan Meteorological Agency (JMA) is a hydrostatic 
spectral model using spherical harmonics. In GSAM, a two-time-level semi-implicit scheme and a vertically 
conservative semi-Lagrangian scheme (Yoshimura and Matsumura 2005; Yukimoto et al. 2011) are used to allow 
a longer timestep, and the reduced grid (Miyamoto 2006, 2009) is used to save computational cost. We have 
developed a nonhydrostatic version of GSAM for higher resolutions. We have also developed an option of using 
double Fourier series instead of spherical harmonics as spectral basis functions for efficiency. 
 

2. Development of nonhydrostatic spectral model 
  We have developed a nonhydrostatic dynamical core for GSAM. We use the following prognostic equations: 
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where, 

€ 

p  is pressure, 

€ 

π  is hydrostatic pressure, 

€ 

π s  is surface hydrostatic pressure, 

€ 

η is a hybrid vertical 
coordinate of 

€ 

σ (= π /π s)  and 

€ 

p , 

€ 

t  is time, 

€ 

v  is the horizontal wind vector, 

€ 

w  is vertical wind, 

€ 

T  is 
temperature, 

€ 

D3  is 3-dimensional divergence of the wind, 

€ 

Φ is geopotential height, 

€ 

Ω  is the earth’s rotation, 

€ 

r  is the radial position vector, 

€ 

R  is gas constant, 

€ 

c p  is specific heat capacity at constant pressure, and 

€ 

cv  is 
specific heat capacity at constant volume. These equations are substantially the same as those of the 
ALADIN-NH nonhydrostatic limited-area spectral model (Bubnová et al. 1995; Bénard et al. 2010) and those of 
the nonhydrostatic version of IFS (Wedi and Smolarkiewicz 2009). But there are some differences in the way of 
integration. In Bénard et al. (2010), an iterative centered implicit (ICI) scheme, in which whole terms are treated 
implicitly through iteration, is used to enhance stability. In our nonhydrostatic model, a non-constant coefficient 
semi-implicit scheme is used, in which linear terms are treated implicitly and residual nonlinear terms are treated 
explicitly. The coefficients of some of the linear terms are set to be non-constant in time and space. When 
linearizing the underlined terms in Eqs. (3) and (8), which relate to sound waves, the present values of 

€ 

∇Φ ⋅∂η /∂π  and 

€ 

π /RT ⋅ ∇Φ ⋅∂η /∂π  are used as non-constant coefficients. These values become large where 
the orography is steep. Using not only constant coefficients but also non-constant ones contributes to enhance 
stability because the approximation by the linear terms becomes better and the residual nonlinear terms become 
smaller. A preconditioned generalized conjugate residual (GCR) method, a fast-convergent iteration method, is 
used to solve simultaneous linear equations along with the non-constant coefficient semi-implicit scheme, where 
a constant coefficient semi-implicit calculation is used as a preconditioner. At the 15km or coarser horizontal 
resolutions, only one iteration is enough to converge in our test runs. The non-constant coefficient semi-implicit 
scheme with the preconditioned GCR method is more efficient compared with ICI, because only the two 
linearized terms underlined are needed to be recalculated per iteration in grid-space.  
 

3. Development of double Fourier series option 
  We have succeeded in developing not only a hydrostatic double Fourier series model (Yoshimura and 

Section 03 Page 5 of 6



Matsumura 2005) but also a nonhydrostatic one. In a double Fourier series model, the fast Fourier transform is 
used instead of the Legendre transform, which reduces computational cost in high resolutions. We use the same 
type of double Fourier series as in the Eulerian global shallow water model in Cheong (2000). The coefficient of 
the 4th-order diffusion term (i.e. biharmonic spectral filter in Cheong 2002) in the double Fourier series GSAM 
is as large as in the spherical harmonics GSAM and not needed to be larger. Strong spectral filters (e.g. spherical 
harmonics filter) are not necessary in our semi-implicit semi-Lagrangian double Fourier series model. 
 

4. Test runs 
  Two-day test runs of the hydrostatic GSAM and the nonhydrostatic version of GSAM are performed from the 
initial conditions on 24 June 2011 at the TL1279L60 (15km horizontal grid) resolution. Figure 1 shows the 2-day 
mean convective and large-scale condensation precipitation of the hydrostatic and the nonhydrostatic models. 
The difference of precipitation between the hydrostatic and nonhydrostatic models is small. But in some 
mountain regions, large-scale condensation precipitation is apparently larger in the hydrostatic model than in the 
nonhydrostatic model. Here, only the results of the models using double Fourier series are shown. The results of 
the spherical harmonics and the double Fourier series models are very close. In this resolution, computational 
time in the double Fourier series model is about 0.7~0.8 times as long as that in the spherical harmonics model. 
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 Fig. 1. 2-day mean convective and large-scale condensation precipitation of the hydrostatic and the nonhydrostatic models. 
 
5. Reference 
 

Bubnová R., G. Hello, P. Bénard, J.-F. Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure 
terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev., 123, 515-535. 

Bénard, P., J. Vivoda, J. Mašek, P. Smolíková, K. Yessad, Ch. Smith, R. Brožková and J.-F. Geleyn, 2010: Dynamical kernel of the 
Aladin-NH spectral limited-area model: Revised formulation and sensitivity experiments. Q. J. R. Meteor. Soc., 136, 155-169. 

Cheong, H.-B., 2000: Application of Double Fourier Series to the Shallow-Water Equations on a Sphere. J. Comput. Phy., 165, 261-287. 
Cheong, H.-B., I.-H. Kwon, T.-Y. Goo and M.-J. Lee, 2002: High-Order Harmonic Spectral Filter with the Double Fourier Series on a Sphere. 

J. Comput. Phy., 177, 313-335. 
Miyamoto, K., 2006: Introduction of the Reduced Gaussian Grid into the Operational Global NWP model at JMA. CAS/JSC WGNE 

Research Activities in Atmospheric and Ocean Modelling, 36, 6.9-6.10. 
Miyamoto, K., 2009: Recent Improvements to the JMA Global NWP Model. CAS/JSC WGNE Research Activities in Atmospheric and Ocean 

Modelling, 39, 6.9-6.10. 
Wedi, N. P. and P. K. Smolarkiewicz, 2009: A framework for testing global non-hydrostatic models. Q. J. R. Meteor. Soc., 135, 469-484. 
Yoshimura, H. and T. Matsumura, 2005: A two-time-level vertically-conservative semi-Lagrangian semi-implicit double Fourier series 

AGCM. CAS/JSC WGNE Research Activities in Atmospheric and Ocean Modeling, 35, 3.25-3.26. 
Yukimoto, S., et al., 2011: Meteorological Research Institute-Earth System Model Version 1 (MRI-ESM1) –Model Description–. Technical 

Reports of the Meteorological Research Institute, No. 64. 

Section 03 Page 6 of 6




