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The filter formulation developed in 1D and generalized in 2D Cartesian domain (Surcel and Laprise 
2010) is here adapted to 2D cylindrical polar geometry, as a step towards spherical polar geometry. The filter 
is tested for different scalar test-functions, first to control the “pole problem” specific of the latitude-longitude 
models, and second to remove the anisotropic noise outside the high-resolution area of a polar stretched grid.  

On the polar grid the formulation of the filter is obtained by separate applications of the filter in 
radial and azimuthal directions. The filtered function can be written in integral form as 
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On a discrete polar grid 

! 

ri," j( ) , the field to be filtered is represented by 
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"i, j =" ri,# j( ) , with 
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i =1,K,n; j =1,K,m  and 

! 

ri " 0,Re[ ], # j " 0,2$[ [ where 

! 

R
e
 is the distance from the centre of the grid to the 

boundary (henceforth referred to as the equator). Then the convolution formula is discretized as follows:  
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l( ) is the unit area surface. It 
must be noted that the weighting function varies with the physical distances, and is not based on grid-point 
count, which is in fact the critical ingredient in the design of the proposed convolution filter.  

To test the skill of the filter at alleviating the “pole problem”, we employ a discrete uniform polar 
grid. The test functions are composed of a large-scale field referred to as the signal or physical component 
and a small-scale field referred to as the noise. The large-scale signal will be represented by a double cosine 
in physical space or by a cylindrical harmonic (eigenfunction of the Laplacian on the polar grid). The small-
scale noise will be represented by a double cosine in physical space. 

A first example regarding the application of the filter to remove the “pole problem” is presented in 
Fig. 1a. The test function is composed from a large-scale signal in form of a double cosine with wavelength 
  

! 

20,000km and a similar noise with wavelength of 
  

! 

500km. The convolution filter is defined such as to keep 
unchanged all scales larger than   

! 

2,400km and to remove all scales smaller than 
  

! 

800km. With these 
parameters the quadrature requires a minimum truncation distance of   

! 

1,600km for an adequate accuracy of 
the convolution. The second example presented in Fig. 1b uses a large-scale signal in form of cylindrical 
harmonic with radial and azimuthal wavenumbers equal to 2 and a noise with wavelength of 

  

! 

600km. For this 
example the filter is designed such as to keep unchanged all scales larger than   

! 

2,400km, but to remove all 
scales smaller than   

! 

1,000km. Because the weighting function corresponds to a more abrupt response 
function, the convolution needs a larger truncation distance of   

! 

2,300km to properly remove the noise and to 
preserve the large-scale signal. To quantitatively assess the influence of the cut-off distance, three different 
weighting functions were tested. The normalized root mean square error (NRMS) is computed between the 
filtered solution and the expected analytical solution. The parameters characterizing these weighting 
functions are 

    

! 

w1 L
a

= 2,400km;L
b

=1,000km( ) , 
    

! 

w2 L
a

= 2,400km;L
b

= 800km( )  and 

    

! 

w3 L
a

= 2,400km;L
b

= 600km( ), where 
a
L  represents the minimal wavelength to be preserved and 

b
L  the 

maximal wavelength to be removed by the filter. The NRMS curve represented in Fig.1c for truncation 
distance between 

  

! 

200km and   

! 

2,400 km shows that the error decreases as the truncation distance increases, 



although not monotonically. The oscillations are larger for w1 than for w3 due to Gibbs’ phenomenon 
associated with the narrower response function, which necessitates wider stencil for accurate representation. 

 
Figure 1: An initial function shown in blue and the filtered function is shown in red. The filter uses the weighting function w2 (a) and 
w1 (b) and truncation distances of 1,600km (a) and 2,300km (b). c) The NRMS curves as function of the truncation distance for the 
three weighting functions presented above.  

We now present the skill of the filter at removing the anisotropy on the stretched polar grid. This grid 
contains a “uniform” high-resolution domain in the sector 
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r
1
, r
2( ) = 3,500; 7,500( ) km and 

  

! 

"
1
, "

2( ) = 5 8 # 2$ , 7 8 # 2$( ) . A gradual stretching zone is used adjacent to the high-resolution area: 

      

! 

r " 2,500;3,500( ) U 7,500; 8,500( ) and 
    

! 

" # 4.5 8 $ 2% , 5 8 $ 2%( ) U 7 8 $ 2% , 7.5 8 $ 2%( ) , with local stretching 
rate of 

! 

s
r

= 8%  in the radial direction and 

! 

s" = 3.8% in the azimuthal direction. Low resolution is used 
elsewhere in the domain resulting in a total stretching factor of 

! 

S
r
" S# " 6 . 

  An example of the application of the filter on the polar stretched-grid is presented in Figs 2a and 2b. 
The first panel represents the initial test function composed from a cylindrical harmonic with radial and 
azimuthal wavenumbers equal to 3 and a noise in form of a double cosine with wavelength 400km. The noise 
is gradually added in the stretching zones and in the high-resolution area and the filter is applied outside the 
uniform high-resolution region. The convolution filter uses the weighting function w1 and a truncation 
distance of 2,300km. We note that the noise is completely removed and not deformations or attenuations of 
the large-scale signal were observed. We verify the performance of the filter to conserve the filter quantities 
computing the normalized conservation ratio (NCR) between the initial and the filtered function. Figure 2c 
presents the NCR for a test function similar with those used for the uniform grid, but with the noise added 
gradually in the stretching areas and the high-resolution domain. Using the same weighting functions as in the 
first case we note a better conservation for weighting functions that need a smaller truncation distance, but all 
NCR curves eventually approach zero when using large truncation distances. 

 
The experiments realized on the polar grid demonstrated the ability of the convolution filter to 

adequately remove small-scale noise both in the polar region and also in the anisotropic “arms-of-the-cross” 
regions of the variable polar stretched grid. The convolution filter can be concomitantly applied to address the 
pole problem and also to remove anisotropic noise in the stretching region of the grid, by choosing 
appropriate parameters for the convolution weighting function.  

Reference 
Surcel, D., and R. Laprise, 2010: A General Filter for Stretched-Grid Models: Application in Cartesian Geometry. Mon. Wea. Rev.  
 doi: 10.1175/2010MWR3531.1. 

a) b) c) 

Figure 2 The initial (a) and the 
filtered (b) signal when the 
convolution filter uses the 
weighting function w1 and a 
truncation distance of 2,300km. 
c) The NCR curves as function 
of the truncation distance for the 
three weighting functions 
presented above. 
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