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1. Introduction 

Since data assimilation theories based on maximum likelihood 
estimation such as 4D-Var have error covariance matrices (ECMs) 
as external parameters, real data assimilation systems (DASs) 
must have ECMs with a sufficient level of accuracy. The validity of 
ECMs is one of the main factors in determining the accuracy of 
analysis fields because they strongly influence the effects of 
observational data and background fields on analysis fields. 

Two methods can be used for ECM optimization. The first is 
based on Desroziers and Ivanov (2001, QJRMS) and Chapnik 
(2006, QJRMS), and is referred to here as the DIC method. In DIC, 
ECMs are tuned to satisfy the theoretical relationships between 
ECMs and the cost function of 4D-Var, and the method includes 
evaluation of observation data impacts (ODIs) on analysis fields 
because it includes calculation of degrees of freedom for signals 
(DFS) (Rabier, 2002, QJRMS) used in ODI estimation. The second 
is a method based on Daescu (2008, MWR), and is referred to here 
as D08. Although this approach is not an ECM optimization 
method in itself, it indicates the direction in which ECMs should be 
tuned, since it calculates forecast error dependencies on ECMs. 
D08 also includes ODI estimation because it is an extension of 
Langland and Baker (2004) (LB04), which is an ODI estimation 
method involving the calculation of forecast error dependencies on 
observational data. Both of these ECM optimization methods 
therefore include ODI estimation. 

This paper describes the development of ECM optimization and 
ODI estimation in the JMA global 4D-Var system. 

  
2.  ECM optimization and ODI estimation with DIC 
  DIC is an ECM optimization scheme that uses the theoretical 
relationships between ECMs and the cost function of 4D-Var as 
follows:   

  DFSNTRNJ  HK2         (1) 

Here, K is the Kalman gain, H is a partial derivative of the 
observation operators, TR is a trace operator, N is the number of 
observation data, and J is the cost function of 4D-Var. This 
equation is valid for each block diagonal part of the observation 
ECM, defined as R, and can be used to optimize R for each 
observation dataset. We implemented the DIC method on the JMA 
global 4D-Var system.  

The results of DIC optimization show that diagonal components 
of the optimized R are about 30% of current settings for most of 
satellite radiance data, while are comparatively resemble the 
current settings for other conventional data. These results are 
consistent with departure value (observation minus guess) 
statistics, and the optimization recovers the theoretical 
relationships between cost functions and observation data 
numbers (Ishibashi, 2006). DIC includes ODI estimation as 
described in the introduction, since Equation (1) includes DFS. 

However, since this equation is correct only if DAS is optimal, DFS 
is shown after DIC optimization in Figure 1 (reproduced from 
Ishibashi, 2006). It can be seen that the contributions of radiance 
data and conventional data to analysis accuracy are about the 
same. 
DIC enables determination of ECMs objectively rather than by 

trial and error. However, data assimilation cycle experiments with 
tuned ECMs using DIC (figures not shown) show that there are 
still several factors for consideration to improve analysis and 
forecast accuracy, including observation error correlation and the 
biases of the NWP model. 
  
3. ECM optimization and ODI estimation with D08  
 D08 is a method used to calculate the dependencies of forecast 
errors on ECMs. It consists of three parts: the first is calculation of 
the forecast error sensitivity field (SF); the second is calculation of 
the dependencies of SF on observational data; the third is 
calculation of the dependencies of SF on ECMs. The first two parts 
are the same as the calculation of LB04, and the last one is a new 
addition in D08. This means that LB04 is included in the D08 
approach. 

LB04 is an ODI estimation method that calculates ODI as a 
forecast error reduction by assimilating observational data using 
adjoint operators of the forecast model and DAS. As the 
construction of an adjoint operator for DAS requires large changes 
to DAS, the implementation cost of LB04 is not small. We divide 
the adjoint operators of DAS into two-step linear problems and 
solve them using fixed original 4D-Var code (Tre’molet, 2008, 
TELLUS).  
  We evaluate the errors of a 15-hour forecast in terms of dry total 
energy (TE), and then calculate its sensitivity field (SF). To 
evaluate the validity of the calculated SF, we construct an 
approximate analysis error field from the SF through 
multiplication by a scalar coefficient, as a normalized SF is a good 
approximation of the analysis error field (Rabier, 1996, QJRMS). 
We then make an optimal initial field by extracting the 
approximate analysis error field from the original initial field. 
Figure 2 shows the error of the forecast from the optimal initial 
field and from the original initial field. As an explicit forecast error 
reduction can be seen from the optimal initial field, our SF 
calculation can be considered valid.   

Figure 3 shows the results of LB04 using the SF. It indicates that 
the largest contributions to forecast error reduction are brought by 
AMSU-A sensors, with the next being radiosonde data in the JMA 
4D-Var system. The contributions from the sum of all satellite 
radiance data and the sum of the remaining data (e.g., radiosondes 
and satellite winds) are compatible. However, comparing the 
results with those of ECMWF suggests that satellite contribution 
is rather small as hyper-spectral sounders (AIRS and IASI) and 
GPS data are not used (or are not enough used) in the JMA 4D-Var 



system, and also because the R settings for radiance data are too 
large. We also check the effects of the norm form used in the 
forecast error specification. If we use wet TE, the water vapor 
channel contributions increase slightly (figures not shown).  

To check the ability of LB04 to detect erroneous observation data, 
we implemented a very small observation error setting for Channel 
8 of AMSU-A/METOP in 4D-Var. LB04 detects forecast error 
increases from this data (Figure 4). 
 Finally, we construct a D08 system by extending the LB04 
system, and evaluate the dependencies of forecast error on the 
observation ECM, R. These calculations are given by the following 
equation:  

   

s
ssqpqp dHdxRyJRJ 1

,, .   (2)    

Here, J is the forecast error in TE, p, q and s are indices for 
observational data, y is the observation value and dx is the 
analysis increment. Eventually, the calculation only multiplies the 
coefficients by the LB04 results. The results of D08 show that 
reduction of the observation error setting for most radiance data 
will reduce the level of forecast error (Figure 5). These results are 
consistent with those of the DIC approach described in Section 2. 
In fact, a 20-percent reduction of these observational data errors 
leads to the forecast error reduction shown in Figure 6. 
 
4. Conclusions 
Here we have reported on the development of ECM optimization 

and ODI estimation in the JMA global 4D-Var system. Further 
development and improvement of these methods, including 
measures such as the introduction of observation error correlations 
to DIC, are planned to reduce analysis and forecast errors in the 
future.   
 
 
 
 
 
 
 
 

 

Figure 2. Root mean square error (RMSE) for 
500-hPa temperature of forecasts from 
the original initial field (black line) and 
from the optimized initial field (green 
line) 
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Figure 1. DFS (ratio to total DFS in %) for the JMA global 
4D-Var system after DIC optimization. *TBB denotes all 
radiance data, *CNV denotes all data except *TBB, SCAT 
denotes QUIKSCAT, AIR denotes airplane, TEMP denotes 
radiosonde, CSR denotes geostationary satellite radiance, and 
the others denote individual satellite sensor names. This 
figure is adapted from Ishibashi (2006). 
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Figure 3. Results of LB04 ODI estimation in 
JMA’s global 4D-Var DAS calculated for 
the initial, 00 UTC on July 20, 2007 
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Figure  4. Example of erroneous channel 
detection by LB04. The solid black squares 
show the ODI estimation of LB04 for a case 
in which Channel 8 of AMSU-A/METOP2 is 
given an incorrectly small observation error 
setting. The solid line shows the case of 
routine setting for comparison.  

 
Figure 6. Forecast error reduction by R tuning 

according to the results of D08 estimation. 
The figure shows the global average of the 
normalized RMSE difference (routine 
setting minus tuned setting for 
temperature).  

Figure 5. Results of D08 – forecast 
error change (measured in total 
energy) caused by perturbing 1 
(K) of observation error 
standard deviation in the JMA 
global 4D-Var system for 
AMSU-A/METOP2     


