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There are three basic classes of finite-difference schemes used for numerical weather 

prediction: explicit, implicit, and semi-implicit. A large series of numerical experiments 

demonstrate some advantages of semi-implicit methods under certain conditions. Some work has 

been already made to introduce semi-implicit methods into the regional atmospheric model 

COSMO-RU [3]. In order to find out the effect of this modification we have compared the 

explicit and semi-implicit schemes for a barotropic model using the COSMO-RU objective 

analysis data and boundary conditions updating with interpolated hourly results of 24 hour 

COSMO-RU prediction on each step. This article contains a brief description and results of this 

work. 

Equations and numerical schemes 

The barotropic model is represented by the following equations in the Cartesian coordinate 

system: 
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Here u and v are wind components in the x- and y-directions, Φ is the geopotential, f is the 

Coriolis parameter, K is the kinetic energy, and Q is the vertical component of the absolute 

vorticity. 

The Arakawa A grid was used for the explicit scheme, while the Arakawa B grid was applied 

for the semi-implicit scheme. 

Filtering methods 

To avoid computational noise in data fields near the boundaries, we can move several grid 

rows closer to the boundaries. For better noise suppression, we can use weighted averaging of 

neighboring values. We use the following formula: 
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where   is the initial field and *  is the modified field. 

COSMO-RU model 

The COSMO-RU model [1, 2, 4] uses a second-order leapfrog HE-VI (horizontally explicit, 

vertically implicit) and a two time-level second- and third-order Runge-Kutta split-explicit 

schemes. A three time-level 3-dimensional semi-implicit scheme is also inserted into the model, 
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but has not been properly tested yet. The variant of the model used for comparison in this work 

uses a 350×310 grid with a grid step of 14 km in rotated spherical coordinates (rotated 

coordinates of the southwest corner are 19° S, 19° W, and the geographical coordinates of the 

rotated North pole are 35° N, 145° W). 

Numerical experiments 

We took the 500 hPa geopotential height and horizontal wind components (for 2010/01/30) 

at 500 hPa as initial data. 
 

 
Fig. 1. 500 hPa geopotential height (dam): initial state at 00 UTC 2010/01/30, 24-h COSMO-RU forecast (using 

a second-order leapfrog HE-VI scheme) and COSMO-RU objective analysis at 00 UTC 2010/01/31. The model time 

step is 80 seconds. 

 

 
Fig. 2. Left picture: The 24-hour forecast of 500 hPa geopotential height (dam) using the explicit scheme. The 

maximum difference from the corresponding objective analysis is about 17 dam. We used here the averaging filter at 

every 7
th

 step. The time step was 18 sec. Right picture: The same but for the semi-implicit scheme. The maximum 

difference from the objective analysis is about 15.6 dam. The time step was 180 sec, and no filtering was applied. 

 

As we see from these experiments, the semi-implicit scheme shows the best results even with 

much larger step (180 seconds instead of 18). So we can say that the semi-implicit scheme can 

be useful to make the calculations in the COSMO-RU model faster. In the nearest future we plan 

to introduce the semi-implicit method into the COSMO-RU model. 
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A big brother multi-pole experiment with stretched grid GCMs
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Limited domain and global variable resolution models are the two cheap techniques to produce a full 
dynamical climate simulation at high resolution. Each technique has its advantages and drawbacks. 
Although  limited  domain  models  (e.g.  Giorgi  1990)  are  always  based  on  a  rectangular  domain 
surrounded by thin rectangular relaxation areas, there exist  several techniques to produce variable 
resolution over the globe (Fox-Rabinowitz et al.,  2008).  As demonstrated by Courtier and Geleyn 
(1988), the only method which ensures isotropy everywhere is the one based on homothetic expansion 
on  a  stereographic  projection  plane.  Isotropy  of  the  horizontal  discretization  is  a  useful  property 
because the atmosphere equations (except the Coriolis term) are independent of the direction of the 
axes. So, introducing anisotropy in the numerics introduces artifacts in the solutions, e.g. by filtering 
more  waves  coming from the  West  than  waves  coming  from the  North.  On the  other  hand  this 
technique is little flexible with regard to the domain definition. Indeed, as soon as the pole of high 
resolution and the total number of points are defined, the only degree of freedom is the stretching 
factor: with a high stretching factor, you get high resolution near the pole, but the resolution decreases 
rapidly when going to the antipodes. It is not possible to combine high resolution over a wide area and 
low resolution over the rest of the globe, with a reasonable transition in between.

In Déqué (2010) two experiments are presented in a "perfect model" framework. A high resolution 
global GCM is supposed to be a reference that several stretched-grid GCMs try to mimic. In the first 
experiment, the GCMs are run without constraint. One observes that the statistical characteristics are 
tiling rather nicely: the grid points can be pooled so that the different stretched runs produce a quasi-
seamless distribution over the globe. However, when a single day is considered, the "GCM-mosaic" is 
no longer seamless, because each stretched simulation is independent. In a second experiment, the 
stretched GCMs are driven by a low resolution GCM in the part of their grid where resolution is low. 
Then, as can be seen for example by Hovmoeller diagrams, the "GCM-mosaic" is almost seamless on 
a day-to-day basis. The added value of the "mozaic GCM" with respect to the low resolution driving 
GCM can be evaluated by comparing to the high resolution GCM. However, this comparison can be 
done only in terms of statistical distribution, because the chronology of the high and low resolution 
runs are independent.

In order to evaluate the ability of the re-created high resolution to mimic the reference, the big brother 
approach (Denis et al., 2002) is a traditional approach in regional climate modeling. This is the aim of 
the present study. Here the big brother is a TL511 (40 km mesh) version of ARPEGE-Climate version 
5.1 (Déqué 2010). A 20-year simulation with monthly observed SSTs (1989-2008) is performed, and 
the 6-hourly prognostic variables are filtered to TL127. This big brother has five little brothers in 
TL127 (160 km mesh) with a stretching factor of 4, so that the maximum resolution of each little 
brother is equal to the resolution of the big brother. The five poles are located in the Atlantic-Europe 
domain,  so  that  the  resolution  is  almost  constant:  (69.5W,35.5N),  (45W,35.3N),  (26.2W,49.7N), 
(0W,40.8N), (26.2E,49.7N).

Figure 1 shows the resolution of the mosaic based on the 5 stretched grids. The dots correspond to the 
grid points where a given little brother is not relaxed towards the big brother. Thus the dotted area is 
the  equivalent  free  area  of  a  limited  area  model.  The  relaxation  time  depends  on  resolution:  it 
decreases from 1 day (resolution 70 km) to 1 time step where the resolution of the little brother is 
equal to the resolution of the driving conditions (160 km). The driving is much more progressive than 
in a limited area model, reducing the risk of numerical shock at the boundaries.

Figure 2 shows the DJF mean and standard deviation of mean sea level pressure of the high resolution 
GCM and the 5 stretched GCMs driven by the filtered output of the high resolution GCM. They are 
really similar and the seams (guessed from Fig. 1) are hardly visible. The daily correlation between the 
two models is 0.99. If we apply to the daily fields the same filtering as for the driving conditions to 
extract the high resolution part, we still have an anomaly correlation of 0.26 in the free zone (dotted 
area of Fig. 1) between little and big brothers. This shows that the small scales regenerated by the little 
brothers contain a part of information common with the big brother's small scales.
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Figure 1: Equivalent resolution of the mosaic obtained with the 5 little brothers (contour 
interval 10 km); the dots correspond to individual grid points which are not relaxed in the 
stretched GCMs.

Figure 2: DJF mean sea level pressure of big brother (left) and mosaic of little brothers 
(right); mean (top) and standard deviation (bottom); contour interval 5 hPa.
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1. Introduction
Current climate models require efficient schemes for advection of humidity, liquid and solid water

variables, and a number of chemical constituents. Semi-Lagrangian (SL) transport schemes have proved
to be an efficient numerical method for treating the advection process. However, a serious disadvantage
of most SL schemes is that they do not formally conserve integral invariants, in particular, total mass,
which has been found to drift significantly if no corrections are applied during long integrations of the SL
climate model. Finite-volume based conservative SL transport schemes have gained prominence during
the recent years, but only a few of them are available for spherical geometry (global) application. The
most successfull developments in the spherical geometry are presented in papers [1], [2], [3]. Current work
generalizes the local conservative cascade semi-Lagrangian global advection scheme introduced in [2] to
the case of latitude-longitude reduced grid (see sect. 3 for details).

2. The finite-volume based conservative SL advection schemes
Unlike traditional SL schemes, finite-volume based conservative SL schemes use grid cells rather than

grid points and cell-averaged values of density rather than its grid-point values. Backward trajectories
with arrival points at regular (Eulerian) grid cell corners are constructed to define departure (Lagrangian)
cell. The cell averaged density value in the j-th grid cell on the time level n + 1 is defined as follows:

ρ̄n+1
j =

Mn(A∗
j )

mes(Aj)
. Here Mn(A∗

j ) is the mass enclosed on the time level n in A∗
j - the departure (Lagrangian)

cell corresponding to the arrival cell coinciding with j-th grid cell and mes(Aj) is the square of j-th grid
cell. Thus, the keypoint of finite-volume based conservative SL schemes is to calculate mass enclosed in
each Lagrangian cell.

3. Conservative cascade scheme on the reduced grid
Latitude-longitude reduced grid is quite similar to the regular latitude-longitude grid, the difference

is that the number of points in latitude rows decreases toward the poles. So, the latitude resolution is
uniform and the longitude resolution decreases towards the poles remaining uniform inside each latitude
row.

In order to apply the conservative cascade scheme on the reduced grid firstly the density is redis-
tributed from the reduced grid to the regular (full) latitude-longitude grid in conservative manner. The
latitude rows of the full grid coincide with those of reduced grid, and the number of points in latitude
rows of the full grid is equal to the number of grid-points in equatorial latitude row of the reduced grid.
This means that series of conservative 1D remappings (the remapping technique is described in [4]) inside
latitude rows should be done to obtain cell-averaged values of density on the full grid. These values are
then used to estimate the masses enclosed in the Lagrangian cells via conservative cascade scheme for
the regular grid. The only dissimilarity is that the number of Lagrangian cells to be treated in the 2nd
remapping differs from row to row. The meridional Courant number should be less than .5 in polar regions
for the scheme to works correctly (see [2] for details). However, modification obviating this restriction is
going ahead.

4. Numerical Experiments
a. Solid body rotation. The scheme was tested on the solid body rotation problem (test #1 from [6]).

The initial distribution was the cosine-bell. Numerical experiments were carried out on the regular grid
with resolution of 1.50 and on reduced grid from [5] of the same maximum resolution, which have 10% less
points than regular grid. The angle of solid rotation α = π

2 , the center of the bell was chosen such that
distribution goes along the pole to pole direction. Full revolution required 480 steps (meridional Courant
number Cθ = 0.5). All other parameters were set up as in [2]. The exact solution after one revolution is
just the initial distribution. Exact backward trajectories were used. The results are presented in Table 1
and on Figure 1.
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b. Smooth deformational flow. The scheme was tested on the smooth deformational flow problem
(see [2] for full description). All parameters except resolution and time step were chosen as in [2]. The
grids were the same as in the solid body rotation test. The test problem was integrated for 3 time units
(nondimensional) with 120 time steps. The results are presented in Table 2.

Figure 1: Error fields in solid rotation test after one revolution for conservative cascade scheme on full
(a) and reduced grids (b), error field for non-conservative SL scheme (c), initial distribution (d)

Scheme l1 l2 l∞ max
Conservative cascade scheme on reduced grid 1.97E-02 1.34E-02 1,34-02 -0.4E-02
Conservative cascade scheme on regular grid 1.97E-02 1.34E-02 1,34-02 -0.4E-02
Non-conservative SL scheme 6.03E-02 3.78E-02 3,1E-02 -1.8E-02

Table 1: Error measures for solid body rotation test

Scheme l1 l2 l∞ max
Conservative cascade scheme on reduced grid 2.3E-04 6.3E-04 8.0-03 -1.45E-07
Conservative cascade scheme on regular grid 2.3E-04 6.3E-04 6.4-03 -1.45E-07

Table 2: Error measures for smooth deformational flow test

The cascade conservative SL scheme exactly preserves the mass and is also more accurate than non-
conservative SL scheme.

Currently the presented scheme is being implemented in the shallow-water model on the sphere [7].
This work was supported with the Russian RFBR grant 10-05-01066.
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1 Introduction
Graphics Processing Units (GPUs) offer high

performance of floating point calculation and wide
memory bandwidth. Recently, general-purpose com-
putation on GPUs (GPGPU) has become an active
area of research in parallel computing because they
provide high performance at relatively low cost for
scientific computing applications. In the field of
high performance computing, it was reported that
various applications such as computational fluid
dynamics [1] and astrophysical N-body simulations
[2] ran dozens of times faster on a GPU than on
a CPU core. In the field of numerical weather
prediction, GPU acceleration of several modules
from the Weather Research and Forecast (WRF)
model were reported. Michalakes et al. reported a
20× speedup by GPU computing for WRF Single
Moment 5-tracer (WSM5) microphysics, which is
a computationally intensive physics module of the
WRF model [3], but this speedup remains as a 1.3×
overall improvement in the application. Linford et
al. reported a 8.5× increase in speed on a GPU
for a computationally expensive chemical kinetics
kernel from WRF model with Chemistry (WRF-
Chem) as compared to serial implementation [4].
Module-by-module acceleration is adopted as an
approach to increase WRF speeds.

Full GPU application, in which all calculations
are executed on a GPU using variables allocated on
its memory, is essential in achieving more than ten
times acceleration over the whole application com-
pared to CPU application. This allows simulation
to be run without frequent data transfer between
the GPU and the host computer.

We are currently working on full GPU applica-
tion for ASUCA [5] - a next-generation high reso-
lution meso-scale atmospheric model being devel-
oped by the Japan Meteorological Agency. As a
first step, we have implemented its dynamical core
as a full GPU application, representing an impor-
tant step toward establishing an appropriate frame-
work for full GPU-based ASUCA. The GPU code
is written from scratch in the CUDA (Compute
Unified Device Architecture) [6] using its original
code in Fortran as a reference. The Numerical re-
sults obtained from the GPU code agree with those
from the CPU code within the margin of machine
round-off error. In this paper, we report the re-

sults of GPU acceleration of the dynamical core
in ASUCA, which has not yet been accelerated in
WRF.

2 GPU implementation
In this study, we computed the dynamical core

on an NVIDIA GTX 285 using CUDA 2.3 with an
AMD Phenom 9750 Quad (2.4 GHz) and 8 GByte
of memory as the host computer.

In the CUDA programming, CUDA kernels for
the GPU are programmed. When a kernel is launched,
it is executed by individual threads arranged into
blocks with unique block and thread IDs. All blocks
are grouped as a grid and all threads in the grid are
able to access VRAM called as the global memory
on the GPU. Access to the global memory takes
400 to 600 clock cycles, which corresponds to 159
GB/s, for example, in the case of the GTX 285. 16
kByte of shared memory is assigned in each block
as scratchpad memory with an access time of about
two cycles. Any part of the shared memory can be
read and written by all threads in the block, which
is utilized as a software-managed cache to reduce
access to the global memory.

The implementations of some functions used in
the dynamical core in ASUCA are explained here.
2.1 Advection

In order to improve calculation performance in
ASUCA, access to the global memory is reduced
by making use of the shared memory as a software-
managed cache. To calculate advection for a given
grid size (nx, ny, nz), the kernel functions for the
GPU are configured for execution in (nx/64, nz/4, 1)
blocks with (64, 4, 1) threads in each block. Each
thread specifies an (x, z) point and performs calcu-
lations from j = 0 to j = ny − 1 marching in the y
direction. In order to facilitate the implementation
of kernel functions for domain decomposition with
MPI, the z direction in numerical space is mapped
to the y direction in CUDA.

The four-point stencil of a point in each direc-
tion is required to compute advection. To carry out
calculations in the j th slice, the elements in the
current slice are needed for calculations by more
than one thread. On the other hand, elements pre-
ceding and succeeding the current y position are
used only for the thread corresponding to the el-
ement’s (x, z) position. Each block therefore has
an array with (64 + 3) × (4 + 3) elements in its
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shared memory, which is utilized to accommodate
2D sub-domain data and halos for the current j th
slice. The elements along the y axis are stored in
registers on the corresponding thread (Figure 1).
Data stored in both shared memory and registers
to perform the j th computation are reused for the
j + 1 th calculation as far as possible.

Marching direction	

Shared memory	

Register	

1 thread	

y	

x	

z	

4

Figure 1: (64 + 3) × (4 + 3) elements in shared
memory and 3 elements in registers along the y
axis

2.2 1D Helmholtz-like elliptic equa-
tion

The 1D Helmholtz-like elliptic equation is solved
in the vertical direction because the HE-VI scheme
is adopted in ASUCA. Through discretization of
the equation, a tridiagonal matrix is obtained. The
basic strategy of implementation for the solver for
this matrix is the same as that for advection. How-
ever, because sequential computation in the z di-
rection is required for it, threads should not march
along the y axis in view of the efficiency of paral-
lel computing by threads. Thus, (nx/64, ny/4, 1)
blocks with (64, 4, 1) threads are configured to the
given grid size (nx, ny, nz). The threads march in
the z direction for the Helmholtz-like elliptic equa-
tion.

3 Results
Figure 2 shows the performance of the dynam-

ical core in ASUCA in both single- and double-
precision floating-point calculation for six different
grid sizes. With nx set as 32 and nz set as 64, the
value of ny is varied from 16 to 56. In order to mea-
sure the performance on a GPU, we count the num-
ber of floating-point operations in ASUCA running
on a CPU with the Performance API (PAPI) [7].
This code is implemented in C/C++ language cor-
responding to GPU code. Using the obtained
count and the GPU computation time, the perfor-
mance on the GPU is evaluated. The performance
of 67.1 GFlops in single precision for a 320×56×64
mesh on a single GPU has been achieved. It is
found that the dynamical core in ASUCA imple-
mented on the GPU runs 51.5 times faster than
the original code for CPU performed by the serial
implementation in Fortran on the Intel Core i7 920
2.67 GHz. In the case of the computation in dou-
ble precision, the speed is increased by a factor of
15.8.
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Figure 2: Performance of ASUCA on a GPU (GTX
285) and a CPU. The solid blue and red points
indicate the performance of the GPU version in
single and double precision respectively. The
magenta outline points show the performance of
the original Fortran code running on a CPU core.

4 Conclusion and future work
We are currently developing a full GPU ver-

sion of ASUCA. As a first and key step, we have
implemented its dynamical core on a GPU. The
effective utilization of shared memory in the GPU
for optimization has resulted in the performance of
67.1 GFlops, which is 51.5 times faster than the
original code on a CPU. Implementation for multi-
GPUs will be a subject of future work.
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