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The  isotopic  composition  of  precipitation  (herein  after  denoted  as  δ,  where  δ  = 
(R/RSTANDARD - 1) × 1000, and  R is the heavy to light isotope ratio, and we focus here on the 
oxygen-18 in  precipitation,  δ18O) is  widely  used  for  both  hydrology and  climate  variability 
studies.  Mapping out the spatial distribution of δ values has been done by several studies using 
regressions  (e.g.  Farquhar  et  al.,  1993;  Bowen  and  Wilkinson,  2002;  Buenning  and  Noone, 
2008).   Isotope  equipped  General  Circulation  Models  (GCMs)  provide  another  approach  in 
predicting the spatial distribution of δ values.  In this study, regressions are performed on both 
the Global Network for Isotopes in Precipitation (GNIP) observational records and three GCMs 
to examine how well the models capture the balance of local and non-local (advective) controls. 
This type of analysis provides a measure of which processes give rise to model errors, and thus 
expands on simple model/data comparisons.  In particular, the models have large errors over the 
high-latitudes, where predicted δ values are not depleted enough; a regression analysis provides 
insight into why the models perform poorly in these regions.  The regression model used here is 
one that is similar to both Farquhar et al. (1993), Bowen and Wilkinson (2002), and described in 
detail by Buenning and Noone (2008):

8
2

76
2

543
2

21 aaaaaPaTaTaa +++++++= θθφφδ
where T is annual mean temperature (K), P is annual mean precipitation (mm month-1),   is the 
latitude, θ is annual mean potential temperature (K), and a values are regression coefficients used 
to fit the observed and simulated δ18O values.  The regression is performed on the GNIP station 
observations as well as the GCMs.  The GCMs examined here are MUGCM, ECHAM, and 
GISS, using simulated  δ,  T,  P and  θ fields.  The regression bias, associated with processes not 
captured by the local conditions (both observed and simulated), is defined as ε = δa - δo where δo 

is the observed or simulated value.  
Figure 1a shows the annual mean bias of the observational based regression for δ18O 

values, mapped onto a grid using Cressman (1959) objective analysis.  The regression model bias 
has a root mean square error of 2.26‰.  However, has large biases  at certain locations.  For 
instance, the regression predicts the  δ values to be too low over the Southern Oceans and the 
Arctic Ocean north of Scandinavia.  Over most of Canada and Alaska,  the model predicts  δ 
values that are not depleted enough.  

These locations are consistent with the regions where Bowen and Wilkerson (2001) found 
high-magnitude residual regions.  Many of the problematic regions were in the mid and high 
latitudes,  and  were  due  to  differences  in  vapor  transport  within  the  latitudinal  zones.   For 
example, vapor in the North Atlantic (where temperatures are high) is advected northeastward 
towards  the  Arctic  Ocean  where  the  resulting  rain  will  be  enriched  in  the  heavy  isotopes 
compared to other locations within a latitudinal zone.  Over Canada, the opposite occurs as vapor 
is transported from the northwest, bringing in more depleted δ values. 

Using simulated values from GCM grid cells, comparable GCM-based regression models 
were established, and the bias relative to the GCM simulated δ18O are computed (Figures 1b-d). 



Many of the biases that appeared in the observationally based regression model also show up in 
the GCMs; however, the magnitudes and extent are different in some regions.  For example, all 
of the regression biases are large and positive in northern Canada; though, the GCM-based biases 
are higher in the eastern portion of the continent and are generally large throughout the high and 
mid northern latitudes.  This would indicate that the GCMs inadequately simulate the non-local 
controls of the hydrological cycle for the northern continents.  Furthermore, the observational 
and  GCM based  regressions  all  have  negative  biases  in  the  Southern  Oceans.   This  would 
suggest that the  δ values are largely influenced by non-local process for this region, such as 
moisture  advection,  and  the  GCMs  reasonably  capture  this  non-local  component  of  the 
hydrological cycle.  However, the extent and magnitude of this bias is much greater than the 
observational-based regression (with the exception of the regions adjacent to Africa).  Similarly, 
there is region in the Arctic Ocean, north of Scandinavia that also has large negative bias for both 
the observational based and GCM based regressions. Thus, the GCMs are able to capture the 
balance between local and non-local processes in the hydrological cycle in a bulk sense, but there 
are large regions within the mid to high latitudes where model improvements are needed.

 

Figure 1. Annual mean δ18O bias (‰) for regressions based on (a) observations (interpolated to a 
grid), and results from (b) MUGCM, (c) ECHAM, and (d) GISS 
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