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At the Deutscher Wetterdienst (DWD) the NWP model LMK (’LM Kürzestfrist’) is under development
since the end of 2003 with the goal to deliver weather forecasts for a very short time range (up to 18 h)
with a spatial resolution lying in the meso-γ-scale (about 2.5-3 km). We expect at this resolution that the
very coarse scale structures of convective cells can be resolved and severe weather events, connected e.g.
with super- and multi cell thunderstorms can be simulated by the model to a certain extent. Additionally
effects of more fine scaled topography (severe downslope winds, Föhn storms, ...) can be considered (Doms
and Förstner 2004).

The starting point for this development is the nonhydrostatic, compressible model LM (’Lokal-Modell’)
(Schär et al. 2002), which is in operational use since end of 1999 and which was extended to handle
with the higher resolution by several steps. As mentioned, at a resolution of 2.8 km the LMK partly
can develop deep convection explicitly. Consequently a full parameterisation of deep convection is not
longer needed. But one still needs again a mechanism to transport humidity out of the boundary layer,
therefore a parameterisaton for this ’shallow convection’ by a simplification of the Tiedtke-scheme is used.
Furthermore besides the humidity variables water vapour, cloud water, cloud ice, rain and snow a new
ice phase (graupel) with higher sedimentation velocities than snow is needed for the explicit simulation
of deep convection (Reinhardt 2005).

In this article we want to concentrate on the improvements of the dynamical core. Instead of the
Leapfrog-time-splitting method used in LM a 2-timestep TVD-Runge-Kutta-method of 3rd order was
used (Förstner and Doms 2004). This allows the use of advection schemes of higher spatial order (here:
upwind 5th order) at relatively high Courant numbers. This dynamical core was tested in several studies.

The test case of a non-linear 2-dim. density current, generated by a falling cold bubble, was proposed
1990 at the ’Workshop on Numerical Methods for solving linear flow problems’ and is e.g. described in
Straka et al. (1993). In a steady, dry adiabatic stratified atmosphere with Θ = 300 K, an elliptic cold
bubble is set with a maximum extension of 8 km horizontally and 4 km vertically, centered in 3 km height
and up to 15 K colder than the surrounding atmosphere. The generation of arbitrary small structures
is suppressed by an artificial diffusion (K = 75 m2/s). By this scale-limiting diffusion a grid-convergent
solution can be found which was calculated by Straka et al. (1993) based on an ongoing reduction of
the grid resolution with an elementary solver. This reference solution is shown after 900 s in figure 1
(left, above). One recognizes especially the propagation of a bow front and the generation of Kelvin-
Helmholtz-instabilities connected with the density current. In figure 1 (left, below) the comparison with
the Runge-Kutta 3rd order time-integration scheme and a resolution of ∆x = 50 m is presented.

A further test with a 2-dimensional flow over a bell-shaped mountain of 100 m height and a half width
of 4 grid spacings was performed and compared to the analytic solution. In figure 1, right, an isothermal
stratification with T0 = 285.15 K, an incoming flow with U = 10 m/s and a resolution of ∆x = 7 km
was used. In the simulation with the new dynamic core a considerably bigger time step of 72 s is used
compared to the Leapfrog-scheme used in LM (40 s) and the solution compares at least equally well with
the analytical one as the results for the Leapfrog core. This is especially the case in the lower half of the
domain. The discrepancies in the upper half are mainly due to the upper boundary condition where a
damping layer is used.

In a third idealized study the flow over a bell-shaped mountain with superimposed variations
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with h0 = 250 m, a = 5 km and λ = 3 km is simulated. The results for two different height coordinates
— SLEVE (Schär et al. 2002) and the normal Gal-Chen formulation — are shown in figure 2. This is
a good test of the formulation of the metric terms in terrain-following coordinates (Klemp et al. 2003)
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Figure 1: Vertical cross sections for:
Left side: Θ

′
= Θ − Θ0 for the density current test after 900 s. above: reference solution by Straka et al.

(1993), below: LMK solution. It is only shown the right half of this symmetric flow.
Right side: vertical wind velocity w for a 2D isothermal flow over a mountain after a simulation time of
30 h. The analytic solution is given in thin dashed contours.

especially at the lower boundary, since inconsistent treatment would lead to small scale distortions of the
wave structure higher up in the atmosphere.

(a) SLEVE coordinate. (b) Gal-Chen coordinate.

Figure 2: Vertical cross section of w for a 2D flow after a simulation time of 24 h. Incoming flow:
U = 10 m/s; stratification: N = 0.01 s−1 – T0 = 285.15 K. ∆x, ∆y = 500 m.
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The SL-AV (semi-Lagrangian, absolute vorticity) model [1] is currently used at the Russian 
Hydrometeorological Research Centre to produce 10-days forecasts in parallel with the 
operational spectral Eulerian model. The resolution of the SL-AV model is 0.9 degrees in 
longitude, 0.72 degrees in latitude, 28 vertical sigma-levels. 
 In certain meteorological situations, the orographic resonance can be seen in model 
forecasts, despite all the undertaken measures known from literature (Eulerian treatment of 
orography [2], SETTLS scheme [3]). The model formulated in vertical σ–coordinate 
employs the continuity equation formulation from [4], which can be written without 
Tanguay-Ritchie modification [2] as  

   
( )ln

0sd p
D

dt

σ
σ

∂+ + =
∂
&

,         

where D - is the horizontal divergence on σ -surface.  
 

It was decided to study the effect of another formulation of continuity equation. It was 
changed to the one of the ECMWF model [5]. Adapting it to the sigma-coordinate and SL-
AV two-time-level semi-implicit scheme gives 
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where V
r

is the horizontal velocity, NLEV - number of vertical levels, the (n+1/2)-time level 
term is discretized along the trajectory with SETTLS scheme; here again the modification 
[2] is omitted for simplicity, for the same reason temporal decentering is omitted, though 
both things are present in the actual model. 

The discretization of thermodynamic equation still follows [4], however, the term 
containing sigma-dot on (n+1)-th time level now uses its value recalculated at the beginning 
of the next time step. 

To test this modification, two 48-hours forecasts starting from the first of November 
2004, 12UTC, were carried out. The initial data are the uninitialized analysis of SL-AV OI-
based data assimilation and thus may contain already traces of orographic resonance. 

Fig.1 depicts isolines of 48-hours forecast for 500 hPa geopotential in the part of Asia 
obtained with the “standard” formulation of continuity equation, and Fig. 2 presents the 
same field obtained with the modified formulation of continuity equation. One can see a 
sensitivity of the resulting field to the changes in the discretization of continuity equation. 
 This effect will be studied in more details with two series of assimilation runs and 
forecasts on their basis using these two formulations of continuity equation. 
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 Fig.1 . Fig.2. 
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Topographic Rossby Waves in a Z-level ocean model 
 

Dmitry S. Dukhovskoy, Steven L. Morey, and James J. O’Brien 
Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, USA, ddmitry@coaps.fsu.edu. 

 
Topographic Rossby waves (TRW) play an important role in the ocean dynamics in regions where the slope of the 
bottom topography is sufficiently large so as to dominate the β-effect. TRW propagate signals in the ocean along the 
slopes over large distances [Oey and Lee, 2002]. Pacanowski and Gnanadesikan [1998] suggested that when the 
bottom slope is less than the grid cell aspect ratio (∆z/∆x) in a numerical ocean model with a Z-level vertical 

coordinate, the model does not accurately resolve topography leading to an 
inaccurate simulation of topographic waves with a modified dispersion relation. It 
is important to better understand the consequences of the modelers’ choices of 
vertical grids since coarse vertical resolution ocean models can alter the rate and 
direction of propagation of waves.  In this study we examine the ability of Z-level 
models to accurately simulate topographic waves by conducting model 
experiments with σ-level (terrain following) and Z-
level vertical coordinate systems with different 
vertical resolutions.  

Figure 1. Model domain. The 
impulse is imposed at the 
eastern boundary. Dashed 
region is a “sponge” domain. 

 
A long barotropic shelf in the northern hemisphere with variable depth H on an f-
plane is considered (Figure 1). The width of the shelf is 400 km, and the depth 
linearly increases offshore from 0 to 400 m. The bottom slope (α) is 1x10-3 which is 
sufficiently large ( )0tanφRHH >∇  to dominate the β-effect (R is radius of the Earth) 
[LeBlond and Mysak, 1978]. The horizontal grid spacing is 5 km.  The dashed area is 
a sponge region with a linearly increasing spatial step to prevent the open boundaries 
from interfering with the solution within the interior of the domain. The simulations 
are performed with the Navy Coastal Ocean Model (NCOM) [Martin, 2000].  The 
model is initialized at rest and integrated for 20 days. Forcing is applied at the 
eastern open boundary in the form of a Gaussian sea level anomaly with a 
dynamically consistent velocity field (Figure 1): ( )
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maximum normalized by the shelf width. The control run is performed with 2 σ 
levels which, for given slope, realistically resolve the topography (Figure 2a). Then 
several runs using Z-levels with the number of levels varying from 3 to 40 are performed. Models with coarse 
vertical resolution significantly alter the topography (Figure 2) and affect the characteristics of topographic waves 
initiated by the impulse (Figure 3). With very coarse vertical resolution (3 Z-levels) the bottom topography is 
approximated by several wide steps (Figure 2b) with widths comparable to the barotropic Rossby radius (L=150 km, 

Ro ~ 600 km).  The model produces double Kelvin waves 
trapped by the partial vertical walls [LeBlond and Mysak, 
1978] (Figure 3b) artificially created by vertical 
discretization of the topography. As the vertical resolution 
increases, double Kelvin waves can not be supported by 

Figure 2. Bottom topography 
in model experiments with σ-
levels (a) and Z-levels (b 
through h). The number of Z 
levels increases from (b) to 
(h): 3, 4, 5, 6, 8, 16, and 40.  
The ordinate is depth (m) and 
the abscissa is the offshore 
distance divided by shelf 
width. 

Figure 3. Snapshots of simulated topographic waves. 
SSH anomalies (cm) on the 13th day of integration. Solid 
line contours are drawn at 1 cm, and dashed line 
contours are -1 cm. The abscissa is the along-shelf 
distance normalized by the length of the domain (1000 
km). The ordinate is as in Figure 2.  (a) σ-level model; 
(b) 3 Z-levels; (c) 5 Z-levels; (d) 16 Z-levels; (e) 40 Z-
levels. Note that (d) and (e) are similar to (a). 
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narrow steps and the solution approaches propagating TRW similar to those simulated with the σ-level model 
(compare Figures 3b to 3e with 3a).  
 
Hovmöller diagrams of the crosscorrelation coefficients of the sea surface height (SSH) anomalies along the shelf 
(Figure 4) are used to estimate the phase velocity of the topographic waves. The crosscorrelation coefficients are 

calculated between the SSH on the day after the forcing at the eastern 
boundary has died out and the system reaches quasi-geostrophic balance 
(8-10th day of the integration) and daily SSH after that day. The estimated 
phase speed of the TRW simulated with the σ-level model is ~2.5 
km/hour. Comparison of the diagrams for the Z-level models with course 
resolution (Figures 4b – 4e) reveals an obvious and significant 
modification of the wave. Starting from the model with 8 Z-levels, the 
solution approaches the σ-level solution (compare Figures 4f-4h with 4a).  
 
The obvious conclusion is that Z-level models can accurately reproduce 
TRWs if the bathymetry is well resolved in the model. Poor vertical 
resolution leads to an unrealistic representation of the bathymetry, which 
initiates different waves with different dispersion relations resulting in 
errors of signal propagation in the model. Future research will focus on 
establishing the necessary criteria for the resolution of bathymetry in Z-
level models for properly simulating TRW. From preliminary results it can 
be noted that the ratio between the grid cell aspect ratio to the topographic 
slope discussed earlier may not be a necessary criteria for a Z-level 
model’s ability to reproduce TWS. It was 
previously understood that this ratio 
should be 1 (as in σ-level models) which 
necessitates that the number of vertical 
grid points in most typical Z-level model 
configurations must be dramatically 
increased. However these results suggest 
that the ratio does not need to be 1 
(Figures 5). For this domain, even 8 Z 
levels (with a grid cell aspect ratio 10 
times larger than the bottom slope) 
seem to be enough to reproduce TRW 
similar to the σ-level model (Figure 4).  
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Figure 4. Hovmöller diagrams of the 
SSH autocorrelation for 8 experiments
using σ-levels (a) and Z-levels (b 
hrough h) shown in Figure 2. Note 
hat the solutions using Z-levels 
pproach the σ-level solution (a) as 
he number of Z-levels increases.  
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The reduced grid for the global semi–Lagrangian

numerical weather prediction model

Fadeev R. Y.

Institute of Numerical Mathematics, Russian Academy of Sciences,
8 Gubkina ul., 119991 Moscow RUSSIA

email: fadeyev@inasan.rssi.ru

The nodes of the regular latitude–longitude grid become denser as the meridians

converge towards the poles. It is well known that the parameterizations of sub–grid

processes in the forecast model may work incorrectly on the non–isotropic grid. The

method of reduced grid constructing for a spectral model using asymptotic properties of

the associated Legendre functions was proposed in [1] and later was modified in [2], [3].

The longitude step of such a grid depends on the latitude. In the present work we

describe another approach suitable for semi–Lagrangian finite difference models.

The accuracy of the semi–Lagrangian scheme substantially depends on the interpo-

lation procedure. Thus, the main goal is that to minimize the number of the grid nodes

at the fixed upper limit εΦ:

π/2∫

−π/2

|Φ− Φ0| dφ0

/ π/2∫

−π/2

Φ0 dφ0 ≤ εΦ, (1)

where Φ(φ0) is the r. m. s. interpolation error of a given symmetric feature f(φ0, λ, φ)

on the reduced grid and Φ0(φ0) is calculated on the regular grid. The symmetric feature

f(φ0, λ, φ) = exp(−µd2) with center at the point (0, φ0) was found to be useful for

comparison of different reduced grids. Here d is the distance on the sphere between the

center (0, φ0) and the point (λ, φ); µ = −4 ln(10−7)/(10.5∆φ)2. The radius of the sphere

is a = 1 and ∆φ is the fixed latitude step of the grid.

Equation (1) is solved numerically for each value of εΦ and we call the grid obtained

in such a way as optimal. We found that for the optimal reduced grid the quantity

εΦ depends exponentially on relative reduction of the total number of nodes nrel with

respect to the regular grid.

The shallow–water test of Williamson et al. [4] which involves the solid–body rotation

of a cosine bell around the sphere through the poles demonstrated promising perspectives

of our method. The results for the number of latitudes nφ = 125 and the number of

longitudes on the equator nλ = 200 are shown in Fig. 1. The quantities ∆i (i = 1, 2)

are normalized r. m. s. errors of the numerical solution calculated on the reduced grid

with respect to the exact solution (i = 1) and the numerical solution obtained on the

regular grid (i = 2). It should be noted that curves with nrel = 35.4 and nrel = 29.7 do

not represent the optimal grids and the first of them is the reduced grid with constant

longitude step on the sphere surface for all latitudes.

The method will be used to construct the reduced grid for the global semi–Lagrangian

numerical weather prediction SL–AV model [5]. Latitudinal derivatives in this model
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are calculated in the space of longitudinal Fourier coefficients, so the reduced grid can

be implemented.

Advantage of our method is that it allows us to take into account various details of

the weather prediction model and to apply additional restrictions to the grid. See [6]

for comprehensive description of the method. This work was supported by the RFBR

grant 04–05–64638.

Figure 1: The quantities ∆1 (left panel) and ∆2 (right panel) versus the number of

complete rotations (255 steps each) on the grids with different relative reduction of the

total number of nodes nrel (in per cent).
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Influence of different vertical and horizontal model resolutions on the 
simulated hydrological cycle of the GCM ECHAM5 

 
Stefan Hagemann, Klaus Arpe and Erich Roeckner 

Max Planck Institute for Meteorology, Bundesstr.53, 20146 Hamburg, Germany, Hagemann@dkrz.de, Roeckner@dkrz.de  
 

A new version of the atmospheric general circulation model (GCM) ECHAM has recently become operational at 
the Max Planck Institute for Meteorology. For the validation of the hydrological cycle simulated by this new 
ECHAM5 model (Roeckner et al. 2003), a special focus was set on the influence of different horizontal and vertical 
resolutions of the ECHAM5 model grid on the quality of the simulated hydrological cycle. The resolutions 
investigated comprise the spectral horizontal resolutions T42, T63, T106, and T159 as well as two vertical 
resolutions with 19 (L19) and 31 (L31) vertical levels. The horizontal resolutions correspond to grid sizes of about 
2.8°, 1.9°, 1.1° and 0.75° or rather 300 km, 200 km, 110 km and 80 km, respectively. The validation of the simulated 
hydrological cycle was conducted from the global scale to the regional scale. For the latter, several large catchments 
are selected which are representative for different climate zones. The validation has shown that increases in vertical 
and horizontal resolution have a significant impact on the accuracy of the simulated hydrological cycle of ECHAM5. 
It turned out that an increase in vertical resolution from 19 to 31 levels generally has a larger impact on the simulated 
hydrological cycle than an increase in horizontal resolution. Despite of the uncertainties of observational estimates 
over the ocean it seems that the simulated hydrological cycle over the ocean is slightly worsening with an increased 
resolution. But over land increases in horizontal resolution and especially in vertical resolution have a positive 
impact on the quality of the simulated hydrological cycle. For some catchments, such as for the Amazon and the 
Amur catchment with regard to the simulated 2m temperature, only the combined effect of increases in both kinds of 
resolution lead to a significant improvement. This indicates that the increase of resolution in only one dimension 
(either vertical or horizontal) may not be sufficient to yield a considerable improvement in the hydrological cycle 
simulated by a GCM in general. An increase of horizontal resolution from T106 to T159 does not noticeably improve 
the simulated hydrological cycle. Therefore it is recommended to use T106L31 for future ECHAM5 studies 
involving the hydrological cycle if computing time is not a limiting factor. 

Fig. 1 shows the annual mean biases of the simulated precipitation over selected large catchments that represent 
various regions from different climates. Over a specific catchment, the bias was calculated from the difference of the 
simulated precipitation minus GPCP data (Huffman et al. 1997). For most of the catchments, the finer vertical 
resolution in the L31 simulations leads to a reduction in the precipitation bias. A slight increase of a positive bias is 
only shown in the Baltic Sea and Arctic Ocean catchment. The effect of an increased horizontal resolution is much 
smaller than the effect of an increased vertical resolution. A significant bias reduction occurs only in a few 
catchments (Amur, Baltic Sea, Danube, Nile, Yangtze Kiang), which is most prominent in the Yangtze Kiang 
catchment. This is clearly related to the much better resolved orography in the very narrow region of the upper 
catchment part of the Yangtze Kiang river. 

The increased vertical resolution causes a reduction of the evaporation bias (not shown) in the majority of 
catchments. Here, the observed evaporation was calculated from the difference of GPCP precipitation data minus the 
observed climatological discharge (Dümenil Gates et al. 2000). A relatively large reduction is occurring over the 
Ganges/Brahmaputra catchment although the bias is still large. This suggests that the increased vertical resolution 
has a positive effect on the simulation of the Indian monsoon circulation. A significant worsening of the evaporation 
bias is only seen over the Arctic Ocean catchment. As for precipitation, the effect of an increased horizontal 
resolution is comparatively small, thereby significantly increasing the positive bias over the Arctic Ocean catchment 
and slightly reducing the bias over the Congo, Mississippi and Yangtze Kiang catchments.  

The combined effect of the precipitation and evaporation biases results in the runoff biases shown in Fig. 2. Here, 
the runoff bias was calculated by the difference of simulated runoff minus the observed climatological discharge. 
The increased vertical resolution significantly reduces the runoff biases over almost all catchments. In the Nile 
catchment, a lot of water is taken from the river for irrigation. As no irrigation information enters the ECHAM5 
model this is not simulated. For the Murray, the positive runoff bias is increased with vertical resolution but the 
Murray catchment covers a very dry area with an annual discharge of only 8 km3/a (= 258 m3/s). As there are 
negative biases in precipitation and evaporation for all model resolutions, even comparatively small deviations 
(ranging from 2 to 6 km3/a) of P-E (= runoff) from the observed discharge may cause larger runoff bias percentages. 
The effect of an increased horizontal resolution on the runoff bias is, although mostly smaller than the effect of an 
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increased vertical resolution, more prominent than for precipitation and evaporation. It generally tends to reduce the 
runoff bias, especially over the catchments of Amur, Baltic Sea, Danube, Parana and Yangtze Kiang. Only the large 
runoff bias over the Ganges/Brahmaputra catchment is increased with finer horizontal resolutions.  
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Figure 1 Annual mean bias in simulated precipitation over several catchments. Over a specific catchment, the 

bias was calculated from the difference of the simulated precipitation minus GPCP data.  

 
Figure 2 Annual mean bias in simulated runoff over several catchments. The runoff bias was calculated from the 

difference of the simulated runoff minus the observed climatological discharge. 
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Fast and Accurate Neural Network Emulation of the NCAR CAM-3 Short Wave Radiation 
Parameterization:  Evaluation of Accuracy of Approximation and Computational 

Performance 
Vladimir M. Krasnopolsky, 

Earth System Science Interdisciplinary Center, University of Maryland and SAIC at 
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Phone: 301-763-8000 x 7262, Fax: 301-763-8545, Email: Vladimir.Krasnopolsky@noaa.gov 
Michael S. Fox-Rabinovitz, and Dmitry V. Chalikov 

Earth System Science Interdisciplinary Center, University of Maryland, USA 
 

A new approach using neural networks (NN) has been recently developed by the authors 
for emulating model physics in numerical climate and weather prediction models. This NN 
approach has been applied first to the long wave radiation (LWR) parameterization in NCAR 
CAM as the most time consumi ng part of model physics [Krasnopolsky et al. 2005].  The NN 
emulation of the atmospheric LWR parameterization is fast (about 80 times faster than the 
original LWR parameterization) and accurate (with practically negligible bias and small rms 
deviations from the original LWR parameterization).   The short wave radiation (SWR) is the 
second most time consuming part of model physics calculations. In this study, we applied the 
NN approach to NCAR CAM-3 SWR parameterization.  The preliminary evaluation of the NN 
emulations developed for NCAR CAM-3 SWR parameterization is presented below.   
 NN approximations of model physics are based on the fact that any parameterization of 
physics can be considered as a continuous or almost continuous mapping (input vector vs. output 
vector dependence), and NNs are a generic tool for approximation of such mappings 
[Krasnopolsky et al. 2002].  NN is an analytical approximation that uses a family of functions 
like: 
(1) 
 
where xi and yq are components of the input and output vectors respectively, a and b are fitting 
parameters, and φ  is a so called activation function (usually it is a hyperbolic tangent), n and m 
are the numbers of inputs and outputs respectively, and k is the number of neurons in the hidden 
layer (for more details see appendix in [Krasnopolsky et al., 2002]).  
 The function of the SWR parameterization in atmospheric GCMs is to calculate heat 
fluxes cased by SWR processes in the atmosphere.   In the NCAR CAM SWR parameterization 
[J. of Clim. 1998 and the references to W. Collins therein] used in this study, the calculations of 
cloudiness are completely separated from the calculations of radiation effects.  Due to such a 
structure convenient for developing NN emulation, we are able to approximate the entire SWR 
parameterization with only one NN, with cloudiness used just as one of the NN inputs.   
 Both the original SWR and the NN developed for approximation of the SWR 
parameterization have 101 inputs (n = 452 in eq. (1)), which include twenty profiles (specific 
humidity, ozone concentration, relative humidity, fractional cloud cover, in-cloud cloud ice 
water path, in-cloud cloud liquid water path, liquid effective drop size, ice effective drop size, 
interface pressure, 12 profiles of aerosol mass mixing ratios) and seven relevant surface 
characteristics (including cosine of solar zenith angle).  This NN has 26 outputs (m = 26 in eq. 
(1)): a profile of the heating rates (HRs) 1,...,26{ }k kq = .  Note that NCAR CAM-3 has 26 vertical 
levels.  The developed NN emulations have one hidden layer with either 50 (NN50) or 100 
(NN100) neurons (k = 50 or 100 in eq. (1)) that provide the sufficient accuracy of approximation.   
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 For these initial experiments, a representative data set consisting of about 300,000 
input/output combinations has been generated using the two-year NCAR CAM-3 simulation.  It 
was divided into three parts each containing about 100,000 input/output combinations.  The first 
part was used for training, the second one was used for tests (control of over-fitting, control of a 
NN architecture, etc.), and the third part (the second year) was used for validations only. 
 Table 1 shows a bulk validation statistics for the accuracy of approximation of our NN 
emulation for SWR, and also the comparison with the accuracy of the corresponding NN 
emulation for LWR [Krasnopolsky et al., 2005].  NN emulations have been evaluated against the 
original parameterizations.  For calculating the error statistics presented in Table 1, the original 
parameterization and its NN emulation have been applied to validation data.  Two sets of the 
corresponding HR profiles (for the original parameterization and its NN emulation) have been 
generated.  Bias and RMSE presented in Table 1 have been calculated as the mean and root mean 
square differences between these two sets of HRs.  Mean values and standard deviations (σ) of 
HRs are also presented for a better understanding of relative errors.  As mentioned above, our 
NN emulation for LWR performs about 80 times faster than the original LWR parameterization.  
Our NN emulation for SWR is approximately two times more complex (has more inputs). As a 
result it performs about 40 times faster than the original SWR parameterization.   
      Table 1. Accuracy of Heating Rates (in K/day) calculated using NN Emulations for SWR and LWR for NCAR 
CAM-3 vs. their Corresponding Original Parameterizations.  Mean values and standard deviations (σ) of HRs are 
also presented.  

NN Radiation Bias RMSE Mean HR σ HR 
SWR 2. × 10-3 0.31 1.47 1.90  

NN50 LWR 1. × 10-3 0.38 -1.43 1.76 
SWR 2. × 10-4 0.25 1.47 1.90 NN100 

 LWR 4. × 10-4 0.33 -1.43 1.76 
 The obtained results show that the NN emulation of the considered atmospheric SWR 
parameterization is highly accurate and provides a significantly improved computational 
efficiency.  Using both NN emulations for LWR and SWR will result in a significant, about 40-
80 times, acceleration of calculations of the entire radiation block. 

The further complete reexamination of computations for all model physics components in 
NCAR CAM-3 will be done later.  This in turn will potentially make a positive practical impact 
on extensive experimentation with this kind of complex models needed for improving climate 
change assessments and weather prediction.  The developed methodology can be applied to other 
LWR and LWR schemes used in the variety of models, process studies, and other applications.   
 The parallel NCAR CAM decadal climate simulations, performed with the original LWR 
parameterization and its NN emulation, are very close to each [Krasnopolsky et al., 2005]. 
Similar decadal experiments are planned for SWR of NCAR CAM-3. 
 Acknowledgments. The authors would like to thank Drs. W. Collins, P. Rasch, and J. 
Tribbia (NCAR) for useful discussions and consultations.  
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Towards an interactive conserving semi-Lagrangian model for chemistry and climate
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1.  Introduction

The main  purpose of  this  work  is  to  solve the
problem of local conservation for chemistry and
climate  by  using  the  algorithm  developed  by
Zerroukat & al. (2002). Results of the validation
for  2D  passive  advection  were  presented  in
Mahidjiba & Côté (2004). We present validation
results  of  the  shallow-water  model  where  this
conservative  scheme will  be  implemented.  We
consider both linear and non-linear problems. 

2. Numerical model

The same fully implicit semi-Lagrangian method
as in  the GEM operational  model  (Côté et  al.,
1998, Yeh et al., 2002) is used to discretize the
shallow-water equations. That is:

1) Uniform Arakawa staggered C-Grid,
2) 2-time-level  iterative  semi-Lagrangian

method  with  interpolated  in  time
advecting wind,

3) Iterative  non-linear  solver  for  the
Helmholtz  problem with  a  direct  solver
kernel,

4) Iterative treatment of  the Coriolis  terms
by grouping them as with the non-linear
terms,

5) Metric  terms  using  the  Lagrange
multiplier approach of Côté (1988),

6) New  trajectory  algorithm  for  staggered
limited-area model.

3. Results 

Two  series  of  validation  experiments  where
performed: linear and non-linear.

a) Non-rotating linear case

In this linear non-rotating case we linearise the
shallow-water  equations around a resting basic
flow  with  constant  height.  In  this  case  the
discretised  governing  equations  can  be  solved
analytically and we can compute analytically the
expected RMS. We can then compare it to the
score  obtained  be  numerical  integration.  We
consider  the  case  of  a  pure  one-dimensional
gravity wave (wave-number = 1) in a 1000 km
square  basin,  a  resting  height  of  1  km,  a

perturbation  of  1  m,  and   ∆x  =  5000  m.  The
integration  time  is  one period.  The  results  are
shown in Fig.  1 where the black  line joins  the
analytic RMS for a few values of the time step.
The numerically computed RMS gives identical
value  (black  dots).  We  compare  also  with  a
Taylor expansion of the exact expression (dotted
line). Note that the quartic term is necessary for
agreement in the range of time steps considered
here, i.e.,

RMSapproximate = c0 + c2∆t2 + c4∆t4.

∆t starts at one tenth of a period and is halved
repeatedly.

Figure 1: Numerically computed RMS, analytical
expression for RMS and its quartic approximation as

functions of time step length.

b) Rotating non-linear case

The second case is for the full set of non-linear
equations  with  realistic  initial  conditions  and
parameters.  There  is  no  exact  solution  in  this
case and a validation strategy is to compare our
results  with  a  carefully  controlled  experiment
published in the literature. Since we run a limited-
area model with the same boundary conditions
as in Temperton & Staniforth (1986) [TS] and we
had their model at our disposal we could repeat
their experiment: first with their model and next
with  our  model.  The  key  element  is  to  have

E-Mail: mahidjiba  .  ahmed.@ouranos.ca  
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properly balanced initial conditions. In this set of
experiments the initialization procedure of TS is
used to produce initial conditions to both models.
We  then  run  both  models  from  these  initial
conditions and the same geometry. The scores
are produced for the same central window as TS
but with all runs performed at uniform resolution.
Fig. 2 shows the RMS scores at 48h obtained for
the  non-linear  shallow-water  case  with  realistic
initial conditions. We see that the new model is
at  least  equivalent  to  TS  and  obtains  slightly
better results at large time steps. Fig. 3 displays
the  48h forecast  height  field  obtained with  the
new model.

Figure 2: Total RMS produced by the model of
Temperton & Staniforth (1986) and the present model

as functions of time step length.

Figure 3: Geopotential height in dam at 48h with a
time step of 1 hour.

4. Conclusion 

As an important preliminary step in implementing
the  conservative  semi-Lagrangian  scheme  of
Zerroukat & al. (2002) interactively in a shallow-
water  model  we presented results  of  validation
experiments  performed  with  the  shallow-water
model. Since the scheme is nearly the same as
that implemented in the operational GEM model
it  provides  a  complementary  quantitative
evaluation.
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 The method of cycles proposed by Mokhov (1993) (see also Mokhov (1995), 

Mokhov and Eliseev (1998), Mokhov et al., (2000), Mokhov et al., (2004)) can be extended 

for the analysis of relative dynamics of different cycles (cross-cycles analysis). It is based 

on the analysis of phase portraits for given time series X(t). In particular, if there is a 

statistically significant linear regression of d2X(t)/dt2 on X(t) with a negative regression 

coefficient -ω2(t), then the process can be fitted by a harmonic oscillator:  

 

d2X/dt2+ ω2X = 0    (1) 

or 

X(t) = A(t)sin[ω(t)t + φ(t)] .   (2)  

The amplitude of the process A(t), its frequency ω(t), and period P(t) = 2π /ω(t), as 

well as the initial phase φ(t), are assumed to change sufficiently slowly with time. Equation 

(1) is considered at an interval of the length I0≥P, such that |I0dΩ/dt| << Ω and |I0dAc/dt| 

<< Ac, where dΩ/dt, Ω, dAc/dt, and Ac are typical values of dω/dt, ω, dA/dt, and A 

respectively (Mokhov and Eliseev, 1998; Mokhov et al., 2004).  

The variables dX/dt and d2X/dt2 can be determined by taking the second-order finite 

differences of the original time series X(t). The frequency ω(t) (and the period P(t)) are 

calculated using the least-squares fitting technique at a moving segment of length I0. Then, 

using this same moving segment, the amplitude A(t) and phase φ(t) can be determined with 

the use of the least-squares method and (2). To filter out the higher frequency noise, the 

raw data can be smoothed taking running means at the window Is.  

The method described above is sensitive to the parameter I0. On the one hand, I0 

must not be less than the characteristic period of variations in the original data set. On the 

other hand, I0 acts as a filter preserving this dominant oscillation modulated by variations 

with time scales longer than I0. Thus, it is necessary that  

 

I > τP ,   τA >> I0 ≥ 2π /Ω >> Is  
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or at least  

I - Is+δt  > τP ,   τA > I0 ≥ 2π /Ω > Is ,  

where I is the full length of the time series, δt is its time step, τP and τA are typical times of 

the changes with a period P and amplitude A respectively (Mokhov and Eliseev, 1998; 

Mokhov et al., 2004). 

 This method can be applied to two variables X1(t) and X2(t) separately. Then the 

phase difference ∆φ(t) = φ2(t) - φ2(t) will characterize the relative dynamics of the 

corresponding  cycles of these two variables. Other characteristics of this cross-cycles 

analysis can be determined from the corresponding linear regressions at a moving segments 

of length I0. In this case the coefficient of linear regression and coefficient of correlation of 

X2(t) to X1(t) (or X1(t) to X2(t)) characterize the cross-amplitude and coherence, 

respectively. The first estimates have been obtained with this cross-cycles analysis method 

for relative dynamics of quasi-decadal and quasi-pentadal cyclicity of North Atlantic and 

Arctic Oscillations, Pacific/North American teleconnection pattern and El-Nino 

phenomena. 

 This work has been partly supported by the Russian Foundation for Basic Research 

and by the RAS program. 
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Computing Centre (CC) atmospheric general circulation model (AGCM) uses uniform 
72 on longitude and 46 on a latitude horizontal grid for single processor computer. Program 
was modified for high performance cluster. An analysis is presented of the primary factors 
influencing the performance of a parallel implementation of AGCM on distributed-memory, 
cluster computer system. Several modifications to the original parallel AGCM code aimed at 
improving its numerical efficiency, load-balance code performance are discussed. The impact 
of these optimization strategies on the performance on MVS 1000M parallel computer is 
presented and analyzed. There are two major components of the AGCM model code: 
Dynamics, which computes the evolution of the fluid flow governed by the primitive equations 
by means of finite-differences, and Physics, which computes the effect of processes not 
resolved by the model's grid (such as convection on cloud scales) on processes that are 
resolved by the grid. The AGCM Dynamics itself consists of two main components: a 
spectral filtering part and the finite difference calculations. The filtering operation is 
needed at each time step in regions close to the poles to ensure the effective grid size there 
satisfies the stability requirement for explicit time-difference schemes when a fixed time 
step is used throughout the entire spherical finite-difference grid. 

It is found that implementation of a load-balanced Fourier algorithm results in a 
reduction in overall execution time of approximately 40% compared to the original 
algorithm. Preliminary results of the application of a load-balancing scheme for the 
Physics part of the AGCM code suggest additional reductions in execution time of 15% can 
be achieved.  

A two-dimensional grid partition in the horizontal plane is used in the parallel 
implementation of the AGCM model. Each subdomain in such a grid is a rectangular region 
which contains all grid points in the vertical direction. Timing measurements on the main 
components of the original parallel AGCM code, using the 4 x 5 x 9 degrees resolution are 
shown on Table. 

 
Table. Execution times of major components in the AGCM code 

Number of processors Dynamics, % Physics, % Fourier in 
Dynamics, % 

1 63 33 10 
8 67 30 18 
16 70 27 20 

 
Comparing the two modules in the main body, we can see the Dynamics part is 

dominant in cost especially on large numbers of nodes. Furthermore, our timing analysis on 
the Dynamics part indicates that the spectral filtering is a very costly component. 

To solve the load-balance problem in filtering, we need to redistribute the data rows to 
be filtered along the latitudinal direction. In the AGCM code, the spectral filtering is 
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performed at each time step before the finite-difference procedures are called. If it could be 
assumed that exactly half of the data rows in one hemisphere are to be filtered, the 
implementation of data redistribution for load balancing would be a relatively simple task.  

The Physics component of the AGCM code consists of a large amount of local 
computations with no interprocessor communication required with the two-dimensional 
partition of the grid. The amount of computation required at each grid point is determined by 
several factors, including whether it is day or night, the cloud distribution, and the amount of 
cumulus convection determined by the conditional stability of the atmosphere. Adding to the 
difficulty of physics load-balancing is the unpredictability of the cloud distribution and the 
distribution of cumulus convection, which implies an estimation of computation load in each 
processor is required before any efficient load-balancing scheme can proceed. 

The computation load for each processor needs to be computed or estimated by some 
means. The approach that we decided to adopt requires only pair wise interprocessor 
communications for data movement and a small amount of bookkeeping. The scheme begins 
with an evaluation of the local load in each processor whether it is day or night. The data load 
is sorted , and a pair-wise data exchange between processors is initiated for balancing the 
load. We would expect even better scaling be achieved for the parallel filtering as well as 
for the overall AGCM code for higher horizontal and vertical resolution versions. 
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NUMERICAL SOLUTION OF THE REACTION–ADVECTION–DIFFUSION
EQUATION ON THE SPHERE

Janusz A. Pudykiewicz, MSC, RPN, e-mail: Janusz.Pudykiewicz@ec.gc.ca

In order to provide an alternative to semi–Lagrangian techniques for the solution of the reaction–
advection–diffusion equation, a simple yet accurate Eulerian algorithm build upon the principle of finite
volumes has been developed. The set of the considered equations has the following form:

∂ϕk

∂t
= −∇uϕk +∇K∇ϕk + F kc (ϕ

1, . . . , ϕNs), (1)

where ϕk is the kth scalar field; k = 1, . . . , Ns, Ns is number of scalar fields, u is the three–dimensional
velocity field, K is the diffusion tensor, and F kc are the functions describing the interactions between scalar
fields. In a most general case, F kc can be written as αklmϕ

lϕm + βklϕ
l, where αklm and βkl are the kinetic

coefficients. The approach adopted here exploits the concept of semidiscretization (Leveque, 2002; page 191);
first, the convective and diffusive fluxes in (1) are approximated and then, the resulting set of the Ordinary
Differential Equations (ODEs) is solved using the appropriate time stepping algorithm. This methodology
has been selected because of both its flexibility with respect to the mesh selection and its inherent ability to
represent subgrid-scale processes and discontinuities in the solution.

The method is initially applied on a geodesic icosahedral grid composed of triangles with vertices located
on the spherical surface (Fig. 1). The control volume Ωi associated with the ith node is created by a two
step procedure. In the first step, the centers of the triangles and the mid-points of the edges are projected
on the surface of the sphere. In the second step, Ωi is defined as a polygon with the vertices located at the
projected points (Fig. 2). Equation (1) is then integrated over Ωi and from the Green theorem,

dφki
dt

= − 1

S(Ωi)

∫

∂Ωi

(uϕk −K∇ϕk)n dl + 1

S(Ωi)

∫

Ωi

F kc dr, (2)

where φki =
∫

Ωi
ϕk(r, t)dr/S(Ωi), i ∈ [1, Np], Np is the number of nodes, k ∈ [1, Ns], and S(Ωi) is the surface

of Ωi. After discretizing of the integral terms, equation (2) can be written in a compact vector form as

dφφφ

dt
= −(INs ⊗AD)φφφ + F(φφφ), (3)

where AD is the sparse matrix representing the advection–diffusion operator, INs is the Ns × Ns diagonal
matrix, ⊗ denotes the Kronecker product, F(φφφ) is the vector of forcings, and φφφ is the vector of the finite
volume averages of the scalar fields

φφφ = [φ11, φ
1
2, . . . , φ

1
Np
, φ21, φ

2
2, . . . , φ

2
Np
, . . . , φNs

1 , φNs
2 , . . . , φNs

Np
]T.

Depending on the stiffness of the system, the time integration of (3) is performed either with the 4th order
Runge-Kutta scheme or with the Rosenbrock solver . The monotonicity of the scheme is achieved with the
explicit local adaptive dissipation proposed by Shchepetkin and McWilliams (1998). The performance of
the advection–diffusion solver is assessed using the suite of standard tests based on the solid body rotation
of a cosine hill and a cylinder as well as the multiscale signal as suggested by Smolarkiewicz and Grabowski
(1989); see Fig. 3 for sample results. The main conclusion from these tests is that the presented method offers
mass conservation, quasi monotonicity and good accuracy. Also, the algorithm is stable for the advection
with Courant numbers of the order of 2.5, similarly as in the advection tests on structured meshes reported
by Vreudeghill (1993).

In order to fully evaluate the method, the reaction–diffusion system on the sphere was also considered.
The comparison of the numerical results to the analytical solution presented by Turing (1952) shows that
the method is quite accurate with the maximum error not exceeding 0.01%. The solver was also applied
for the integration of the nonlinear chemical kinetics system known as a Brusselator (Prigogine and Lefever,
1968).

The main intended application of the reaction-advection-diffusion solver is the simulation of the chemical
constituents in the Earth atmosphere. The scheme described herein can also be easily applied on arbitrary
differentiable manifolds and, therefore, it is a good candidate for a simulation of tracer transport for both
small and large scale flows. The future work will explore numerical solutions of the shallow water equations
on the sphere as well as reactive flows at small scales.
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Abstract. The overset grid system nicknamed "Yin-Yang" grid (Kageyama & Sato, 2004) is singularity 
free and has quasi-uniform grid spacing. It is composed of two identical latitude/longitude orthogonal grid 
panels that are combined to cover the sphere with partial overlap on their boundaries. The system of 
Shallow-Water equations (SWEs) is a hyperbolic system at the core of many models of the atmosphere. In 
this paper, the SWEs are solved on the Yin-Yang grid by using a semi-implicit and semi-Lagrangian 
discretization on a staggered mesh. The scalar elliptic equation is solved using a Schwarz-type domain 
decomposition method, known as the optimized Schwarz method, which gives better performance than the 
classical Schwarz method by using specific Robin or higher order interface conditions. 
 
1. Introduction 
 
The same fully implicit semi-Lagrangian method as in the GEM operational model is used to discretize the 
shallow-water equations as in Mahidjiba et al. (2005) except for the use of spherical trajectories: uniform 
Arakawa staggered C-Grid, 2-time-level iterative semi-Lagrangian method with interpolated in time 
advecting wind, iterative non-linear solver for the Helmholtz problem, iterative treatment of the Coriolis 
terms by grouping them with the non-linear terms, metric terms using the Lagrange multiplier approach of 
Côté (1988). This discretization is implemented independently on each quasi-uniform lat/long part grid. 
The trajectories are computed for each grid panel in three-dimensional Cartesian geometry with the 
restriction that the trajectories are confined on the surface of the sphere. The value at an upstream point is 
determined by the cubic Lagrange interpolation either in Yin (if this point is in Yin) or Yang grid panel. 
The semi-implicit treatment of the gravity terms in the SWEs gives rise to a 2D elliptic boundary value 
problem that must be solved at each time step. We use in this work the domain decomposition method, 
where the solution of the global elliptic problem is obtained by iteratively solving the corresponding two 
sub-problems separately on the Yin and Yang grids, and updating the values at the interfaces boundaries. 
The classical alternating Schwarz method consists in using each sub-problem’s updated solution as 
boundary condition to the other one. Because the two grids do not match, the update is done with a cubic 
Lagrange interpolation and this corresponds to Dirichlet interface conditions. The use of specific Robin or 
higher order interface conditions improves the convergence of the elliptic solver. 
 
2. Preliminary results 
 
In the first experiment, a cosine bell is advected once around the sphere. This simulation is carried out with 
a resolution of 150 × 50 on the Yin grid and 150 × 50 on the Yang grid, this is equivalent to a global 
horizontal resolution of about 200 km. A time step of two hours is used, and it requires 144 time steps (288 
hrs) to rotate the cosine hill one full revolution around Earth. Fig. 1 shows that there is no distortion in the 
shape of the hill at the end of the simulation. The bell structure is maintained in the Yin-Yang grid system 
even when the bell passes trough the overlap region. The time evolution of the normalized maximum 
difference is presented in Fig. 2 and as can be seen the trend and values of the norm are comparable to 
those in Jacob-Chien et al. (1995), and the maximum difference after 12 days is small and is about 2%. 
 
For the next experiment we compare the convergence of the iterative elliptic solver for Dirichlet and Robin 
interface boundaries conditions respectively. Fig. 3 shows that the convergence is improved when Robin 
interface conditions are used. In this experiment the Helmholtz coefficient is equal to one (hard case) and 
we take the coefficient in the Robin condition also equal to one. The optimal value of this later coefficient 
can be found numerically and is expected to further improve the convergence. 
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3. Conclusion 
 
In this work we show that numerical algorithms already validated for a global latitude/longitude grid can be 
implemented, with minor changes, for the Yin-Yang grid system while preserving the same temporal and 
spatial errors. In the near future we will implement optimal Robin and second order interface conditions in 
order to improve the convergence of the elliptic solver, and the remaining shallow water test cases will be 
conducted. A parallelization strategy for this model will also be examined. 
 
Acknowledgement. We acknowledge the support of CFCAS trough a grant to the QPF network. This 
research was partly supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-
FG02-01ER6319. 
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Figure 1: Exact and approximate scalar field after one revolution around the sphere 

 

  
Figure 2: Evolution of the normalized maximum 
difference during one revolution 

Figure 3: Comparison of Dirichlet and Robin 
interface conditions on the convergence of the elliptic 
solver 
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1. Introduction 
  We developed a three-time-level vertically conservative semi-Lagrangian scheme (Yoshimura and Matsumura 
2003), in which computation of the advection terms is split into the horizontal and the vertical directions and the flux 
in the vertical direction is evaluated with a conservative semi-Lagrangian scheme. 
  We have also developed a two-time-level version of the vertically conservative semi-Lagrangian scheme which is 
about twice more efficient than a three-time-level scheme. We adopt new methods shown below to improve stability 
of the two-time-level scheme. 
  We have also succeeded in developing a spectral AGCM using double Fourier series instead of conventional 
spherical harmonics as basis functions. The double Fourier series model is as accurate as and more efficient than the 
spherical harmonics model. 
  

2. Improvement of stability of the two-time-level vertically conservative semi-Lagrangian scheme 
  We improve stability of the two-time-level scheme by adopting SETTLS (Hortal 2002) for nonlinear terms, 
second-order decentering (Temperton et al. 2001) and the methods shown below to avoid extrapolation in time, a 
source of instability. 

 The wind integrated in a semi-Lagrangian scheme instead of the wind extrapolated in time is used for horizontal 
trajectory calculations (Yoshimura 2002). This scheme is similar to but more accurate than the scheme of 
Gospodinov et al. (2001). 
 The potential temperature instead of the temperature is advected horizontally to avoid calculation and time 
extrapolation of the heating term related to the horizontal advection. On the other hand, the heating term related to 
the horizontal divergence is calculated in a conventional finite difference method. 

  

3. Double Fourier series model 
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"  is latitude) are expanded from gridpoint space to spectral space with the same basis functions of double 
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where 

! 

" =# + $ 2, 

! 

"  is latitude and 

! 

"  is longitude. 
  The zonal Fourier filter (Cheong 2000a) is used to filter out the high zonal wavenumber components near the 
poles. The biharmonic spectral filter (Cheong et al. 2002), that is, the 4th-order horizontal diffusion (

! 

"
4 ) is also used. 

The same coefficient of the diffusion as in the spherical harmonics model is enough for stable integrations because 
the use of the semi-Lagrangian scheme improves stability of the double Fourier series model (Yoshimura 2002). 
  The semi-implicit calculation of the double Fourier series AGCM is efficient. The Helmholtz equation related to 
the semi-implicit calculation can be easily solved through the diagonalization in the vertical direction (Yessad and 
Benard 1996) and the inversion of the tridiagonal matrix in the horizontal direction (Cheong 2000b). 
  

4. Prediction experiment 
  We performed a prediction experiment from 00 UTC 9 July 2002 at TL319L40 resolution. We used three models 
(a), (b) and (c) shown in Table 1. Fig.1 shows 2-day forecasts of sea level pressure and Fig 2 shows 2-day 
precipitation forecasts. The results of (a), (b) and (c) are in good agreement. This indicates that these three models 
are of the same accuracy. 
  Table 1 also shows the execution time of three-day integrations with 1 CPU of NEC SX6. The execution time of 
(b) is about half of (a) because the time step of the two-time-level model can be twice of that of the three-time-level 
model. The execution time of (c) is shorter than (b). This is because the Legendre transform (whose operational 
count is O(N3) with N the meridional maximum wavenumber ) used in the spherical harmonics model is replaced to 
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the cost-effective Fourier transform (whose operational count is O(N2logN)) in the double Fourier series model. The 
better efficiency of the double Fourier series model against the spherical harmonics model is expected to become 
more dominant at higher resolutions. 
  

 Table 1. The models used in the experiment and the execution time of 3-day integrations 
 Integration scheme Basis function Resolution Time step Execution time 

(a) Three-time-level Spherical harmonics TL319L40 10 min. 131 min. 
(b) Two-time-level Spherical harmonics TL319L40 20 min. 74 min. 
(c) Two-time-level Double Fourier series ML319L40 20 min. 67 min. 

  

             

             

             
    Fig.1. 2-day forecasts of sea level pressure.                   Fig. 2. 2-day precipitation forecasts. 
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Semi-Lagrangian advection and conservationi

Mohamed Zerroukat, Nigel Wood and Andrew Staniforth, Met Office, UK.
mohamed.zerroukat@metoffice.gov.uk

Semi-Lagrangian (SL) schemes are widely used for the advection component of many mod-
ern operational atmospheric models due to their increased efficiency and stability compared
to Eulerian schemes. However, a common disadvantage of interpolating SL schemes is the
lack of mass and tracer conservation. Though mass conservation may not be critical for short
period NWP simulations, it is very important for long period simulations such as those of
climate studies. Over a long simulation period, the total mass can drift significantly if no
correction is applied. Hence, SL schemes which are inherently mass conserving are desirable.
The challenge is to not only achieve inherent conservation, but to do so whilst minimising
the additional cost over that of a traditional interpolating SL scheme. This motivated the
development of Zerroukat et al. (2002)’s Semi-Lagrangian Inherently Conserving and Efficient
(SLICE) algorithm.

There are two ingredients. The first is to rewrite the Eulerian flux form

∂ρ

∂t
+∇ · (ρu) = 0,

where ρ is a scalar field transported by velocity u, in a finite-volume Lagrangian form

D

Dt

∫
∂V

ρdV = 0 ⇒ Mn+1
a = Mn

d .

Here ∂V is a fluid parcel or Lagrangian control volume, Mn+1
a is its mass at time (n + 1) ∆t

centred on the arrival location xa, and Mn
d its mass at time n∆t centred on the departure

location xd. The second is to adapt Purser & Leslie (1991)’s cascade remapping strategy to very
efficiently decompose a two-dimensional remapping problem (from Eulerian control volumes
to Lagrangian ones, or vice-versa) into a number of much-simpler one-dimensional remapping
problems - see Zerroukat et al. (2002) for details. An important property of cascade remapping
is that it preserves characteristics of the flow, thus minimising splitting errors. Overall, it is
found that in addition to exactly conserving mass, the SLICE algorithm is also competitive with
standard non-conserving semi-Lagrangian schemes from the viewpoints of both computational
efficiency and accuracy.

Zerroukat et al. (2002)’s algorithm in planar geometry has been extended to spherical
geometry in Zerroukat et al. (2004) with no restriction on Courant numbers. A simple fur-
ther extension of the SLICE algorithm is described in Zerroukat et al. (2005) which allows
monotonicity (and positive-definiteness) to be efficiently imposed in both planar and spherical
geometry. This extension operates by first identifying where monotonicity is violated (the
detection stage), and by then locally reducing the order of the piecewise polynomial used in
the remapping algorithm until monotonicity is regained (the reduction stage). A global mini-
mum and/or a global maximum can similarly be imposed and positive-definiteness is achieved
by setting the global minimum to be zero. The resulting monotonicity scheme has been ap-
plied to various test cases. Illustrative comparative results for the challenging, non-smooth,
deformational problem on the sphere are displayed in Fig. 1.

i c© British Crown Copyright
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(a) SLICE, without monotonicity
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(b) bicubic SL, without monotonicity
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(c) SLICE, with monotonicity
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(d) analytic

Figure 1: Solutions after 64 timesteps for non smooth deformational flow on a sphere - see
Zerroukat et al. (2004) and Zerroukat et al. (2005) for definition of problem and parameters.
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