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1 Introduction
These days massively parallel computers are becoming more popular. The JMA non-hydrostatic

model (JMANHM) was parallelized for the distributed memory super computer by using MPI libraries
in the way that the entire domain is decomposed in a single direction and each subdomain is assigned
to an MPI process. However, the parallel efficiency of the model is not very high with a large number
of computational nodes due to the load imbalance among the nodes. Therefore we tried to increase
computational efficiency by implementing two dimensional decomposition.

2 Domain decomposition and computational efficiency
We are planning to replace the current operational meso-scale model with JMANHM in 2004. The

number of grid points of the operational JMANHM will be 361 × 289 × 40. Therefore first the ac-
celeration rate of this number of grid points was investigated. Figure 1 shows the acceleration rate of
JMANHM according to the investigation which was carried out on HITACHI SR8000/E1. This figure
shows that the parallel computational ratio does not effectively increase with more than 24 nodes of the
computer system.

As is mentioned in section 1, the entire domain of JMANHM was divided only for the latitudinal
direction (Fig. 2) in its original design for the parallel treatment, and each subdomain includes ‘ghost
points’ for processes referring to status at the adjacent points. Since the number of the grid points in
the north-south direction of each subdomain becomes small with increasing number of nodes, the load
imbalance of this decomposition scheme tends to be large with more computational nodes. Thus the
parallel efficiency decreases with increasing number of the subdomains, namely, the MPI processes. To
improve the computational efficiency, we introduced two dimensional decomposition which is illustrated
in Fig. 3. Suppose the grid points 361 × 289 × 40 are handled with 40 MPI processes, the excess of
the maximum area size to the minimum is as large as 14 percent in the one dimensional case, while it
can be reduced to 4 percent with two dimensional optimal decomposition.

The two dimensional decomposition does not always
have advantage over the one dimensional decomposition in
computational efficiency, because

• the vector length becomes shorter by the division in
x-direction, and

• the communication overhead becomes twice to com-
municate with all four neighboring processes.

The efficiency depends mainly on the architecture of a par-
ticular machine, the number of the model grids, and the
number of MPI processes used. Fig. 1 Acceleration rate.

Fig. 2 One dimensional decomposition (case of
3 MPI processes).

Fig. 3 Two dimensional decomposition (case of
6 MPI processes).
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3 Validation and comparison of computational cost
Tests for validation and comparison of computational cost were carried out. The tests were conducted

with 40 nodes of HITACHI SR8000/E1 which are used for operational NWP by JMA. Each node is
assigned one MPI process. 39 nodes are used for computation, and one for data output to execute
computation and output simultaneously. Table 1 shows the specifications of the tests. Figures 4 and
5 are the results of six-hour integration of the one dimensional and two dimensional decomposition,
respectively. The three-hour accumulated rainfall amount, sea level pressure, and surface wind are
shown in these figures. The result of the
two dimensional decomposition of 3 × 13
is almost identical to that of one dimen-
sional decomposition of 1 × 39 except for
trivial differences which reflect the changes
of the computational procedure. The com-
putational cost of the two runs are shown
in Table 2. The increase of the computa-
tional time for-preprocessing becomes less
important if forecast time is longer. We
got the improvement of 1.7 percent of com-
putational time with the two dimensional
decomposition in time integration.

Table 1 Specifications of tests.
number of grid points 361 × 289 × 40
horizontal resolution 10 km
vertical resolution 40-1180 m

time step 40 sec
initial time 06UTC 20 December 2003

forecast time 6 hours
computer HITACHI SR8000/E1

number of nodes 40 nodes
peak performance 384 GFLOPS
time integration split-explicit
advection scheme horizontally 4th order

centered flux form
prognostic variables U, V,W, p, θ, qv, qc, qr, qi, qs, qg

4 Summary
Two dimensional decomposition is successfully imple-

mented for JMANHM. The procedure improved the com-
putational efficiency even with the current supercomputer
at JMA. The new function is expected to have larger im-
pact especially on huge scalar architecture machines where
the computational efficiency does not depend on the vector
length.

Table 2 Computational elapsed
time (sec) of 6 hours forecast.

1 × 39 3 × 13
pre-processing 13.95 20.78

time integration 508.96 500.48
I/O 34.18 32.16

total time 557.09 553.42

Fig. 4 Result of 1× 39. Fig. 5 Result of 3× 13.
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Runge-Kutta Time Integration and High-Order Spatial
Discretization – a New Dynamical Core for the LMK

Jochen Förstner, Günther Doms
Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach am Main

E-mail: jochen.foerstner@dwd.de, guenther.doms@dwd.de

LMK is the name for a new development branch of the LM aiming at the meso-gamma scale
(horizontal resolution of 2-3 km) and shortest range (”K ürzestfrist”) forecasts periods (3-18 h). The
new dynamical core for the LMK is based on different variants of 2-timelevel Runge-Kutta schemes
which are combined with a forward-backward scheme for integrating high-frequency modes of the
elastic equations. The first one is the 3rd-order Runge-Kutta scheme used by Wicker and Skamarock
(2002) whereas the second one is a total variation diminishing (TVD) variant of 3rd-order (Liu,
Osher, and Chan 1994).
For horizontal advection upwind or centered-differences schemes of 3rd- to 6th-order can be used –
the operators are formulated in advection form. The vertical advection is normally treated in an
implicit way using a Crank-Nicolson scheme and centered-differences in space.
Most slow tendencies such as vertical diffusion, thermal/solar heating, parameterized convection,
coriolis force and buoyancy are computed only once using values of the prognostic variables at
time step n. These tendencies are fixed during the individual Runge-Kutta steps and contribute to
the total slow-mode tendencies which are integrated in several small time steps together with the
fast-mode tendencies in a time-splitting sense. In contradiction to this, the whole 3D-advection is
computed in each of the Runge-Kutta steps.
In the following the procedure for the TVD-Runge-Kutta scheme is described mathematically in a
simplified form – the treatment of the physical forcing terms is omitted and the only operators listed
are the ones for advection.

Problem to Solve:
∂φ

∂t
= Lslow(φ) + Lfast(φ)

TVD-variant of 3rd-order Runge-Kutta:

φ∗

i,k = φn
i,k − ∆t Lh

i (φn) − ∆t

(

β+Lv
k(φ∗) + β−Lv

k(φn)

)

= φ0
i,k + ∆t Lslow

i,k

∣

∣

∣

∗

0

φ∗∗

i,k =
3

4
φn

i,k +
1

4
φ∗

i,k −
1

4
∆t Lh

i (φ∗) −
1

4
∆t

(

β+Lv
k(φ∗∗) + β−Lv

k(φ∗)

)

= φ0
i,k +

1

4
∆t Lslow

i,k

∣

∣

∣

∗∗

0

φn+1
i,k =

1

3
φn

i,k +
2

3
φ∗∗

i,k −
2

3
∆t Lh

i (φ∗∗) −
2

3
∆t

(

β+Lv
k(φn+1) + β−Lv

k(φ∗∗)

)

= φ0
i,k +

2

3
∆t Lslow

i,k

∣

∣

∣

n+1

0

Time-Splitting Method:

1. step: remaining steps:

φ0+∆τ
i,k = φ0

i,k + ∆τ L
fast
i,k (φ0) + ∆τ Lslow

i,k

∣

∣

∣

×

0
φτ+∆τ

i,k = φτ
i,k + ∆τ L

fast
i,k (φτ ) + ∆τ Lslow

i,k

∣

∣

∣

×

0

with × = ∗, ∗∗ and n + 1 in the individual Runge-Kutta steps.

Horizontal and Vertical Operators:

Lh
i (φ) (4th) =

ui

12∆x

[

φi−2 − 8
(

φi−1 − φi+1

)

− φi+2

]

Lh
i (φ) (6th) =

ui

60∆x

[

−φi−3 + 9
(

φi−2 − φi+2

)

− 45
(

φi−1 − φi+1

)

+ φi+3

]

Lh
i (φ) (5th) = Lh

i (φ) (6th) +
|ui|

60∆x

[

−φi−3 + 6
(

φi−2 + φi+2

)

− 15
(

φi−1 + φi+1

)

+ 20φi − φi+3

]

Lv
k(φ) (2nd) =

wk

2∆z

(

φk+1 − φk−1

)

+ Mv
k (φ) with Mv

k (φ): vertical turbulent mixing term.
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Results of an advection test problem of a tracer in a deformational flow field (Durran 1999) are given
in Figure 1. The number of time steps used for the stable integration of one deformation cycle is given
in the caption for each of the different schemes. The initialized field was a cone with a maximum of
1.0 and a radius of 15 grid spacings.

To test the robustness of the scheme, the winter storm case ”Lothar” (26 December 1999) was simu-
lated with the LM. The maximum horizontal velocity during the simulation reaches 108 m/s. For this
case the new scheme in the combination TVD-RK-3rd/UP-5th allows a time step of 72 s at a reso-
lution of 7 km compared to a time step of 40 s of the operational Leapfrog/CD-2nd scheme. Results
are shown in Figure 2.

(a) RK-3rd / CD-4th – 670 time
steps.

(b) TVD-RK-3rd / CD-4th – 450
time steps.

(c) TVD-RK-3rd / UP-5th – 380
time steps.

Figure 1: Advection of a tracer in a nondivergent deformational flow (Durran 1999). Simula-
tion results after one deformation cycle.

(a) Leapfrog / CD-2nd – ∆t = 40 s. (b) TVD-RK-3rd / UP-5th – ∆t = 72 s.

Figure 2: Winter storm ”Lothar”: 28 hour forecast of the mean sea level pressure in hPa for
26 December 1999, 16 UTC.

References

Durran, D. R. (1999). Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. New
York: Springer.

Liu, X.-D., S. Osher, and T. Chan (1994). Weighted essentially non-oscillatory schemes. J. Comput.

Phys. 115, 200–212.

Wicker, L. J. and W. C. Skamarock (2002). Time-splitting methods for elastic models using forward
time schemes. Mon. Wea. Rev. 130, 2088–2097.

Section 3 2004-07-26 Page 8 of 28



 SPECTRAL ANALYSIS OF REAL-VALUED FUNCTIONS ON A SPHERE:
VISUALIZATION OF SPATIAL SPECTRA

Alexander V. Frolov,
Roshydromet, Russia, afrolov@mecom.ru

An expansion of real functions in double Fourier series using associated Chebyshev
polynomials was proposed in [1]. This expansion, in contrast to the traditional one based on
spherical harmonics, is uniformly convergent on the globe, including the poles, and allows
the use of Fast Fourier Transform in both directions [1, 2].

The associated Chebyshev polynomials of the first kind are simply depending on latitude.
They can be expressed as Fourier series in terms of cosine polynomials for even zonal wave
numbers m and as Fourier series in terms of sine polynomials for odd zonal wave numbers
m [1]. Thus, the spatial spectrum of any real–valued function has a clear physical meaning;
in particular, it can easily be visualized on a plane.

Let a real-valued function  f(θ, λ) be defined on the surface of a sphere  Ω (0 ≤ θ ≤ π, 0 ≤ λ ≤
2π) and its square be integrable with some weight, i.e.,  f(θ, λ) ∈ L2(Ω). The function f(θ,λ) ∈
L2(Ω) is represented in the form of a double Fourier series:

( ) ( ) ( ) ( ) ( )[ ] ( ) .0,sincos, 0 ≡+= ∑ θλθλθθλ bnbndf
n

nn                                               (1)

The Fourier coefficients dn(θ) and  bn(θ) are continuous functions of θ  and can be uniformly
fit by associated Chebyshev polynomials (m=0,1).  Furthermore, we make the following
transformation of (1):
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where the amplitude Cn(θ) and the phase ηn(θ) are also continuous functions of θ  and
therefore can be expanded in Fourier series based on associated Chebyshev polynomials
(m=0,1).
The appropriate Fourier series are
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Then instead of (1) we have
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As an example, we consider the spectrum of the 500 hPa geopotential height ��� λθ� � �+ .
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we can calculate the spatial spectrum of ),(/
500 λθH ) by using (3), (4). The values of 

�
n,m   are

shown in Fig. 1. Two power maximums corresponding to global )nm( 31−==  and synoptic

)nm( 84 −==  scales of the atmospheric circulation can be seen in the figure.  The

existence of these spikes is well known in meteorology, however, for the first time they were
presented in such an obvious and pictorial form.

Figure 1.  Distribution of amplitudes 
�

n,m  of 500 hPa geopotential height
deviations ),(500 λθH ′  at 20,...,1,0=m   (abscissa) and at 2010 ,...,,n =   (ordinate ).

Following the same method, the spatial spectrum of any real-valued function can be
constructed in any latitude belt or even in a spherical trapezoid.
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Development of a 20 km mesh global NWP model on the Earth Simulator 
 

Keiichi Katayama*, Hiromasa Yoshimura** and Takayuki Matsumura* 
*Numerical Prediction Division, Japan Meteorological Agency 

**Climate Research Department, Meteorological Research Institute 
e-mail: k-katayama@naps.kishou.go.jp 

 
1) Introduction 

The global modeling groups of NPD/JMA and the Climate Research Department of MRI/JMA 
have been developing a very high resolution global model GSM-TL959L60 on the Earth 
Simulator (ES) (Katayama et al., 2003). The GSM-TL959L60 is a 20 km mesh global spectral 
model and adopts a new semi-Lagrangian scheme (Yoshimura et al., 2003). 

We have optimized the model on the ES, and the execution time of 1-month forecast is about 
3.5 hours using 60 nodes of the ES. We have executed several experiments of short range (3-5 
days) and long range (1-2 years) forecasts, and the various meteorological phenomena such as 
typhoons and the Baiu fronts were well reproduced. 

We will improve the computational performance and the physical parameterizations of the 
model in 2004. The GSM-TL959L60 will become operational on the next JMA supercomputer 
system in 2007. 

 
2) Computational performance 

We have optimized the model on the ES. 
Especially, the Legendre transform is well 
optimized with the vectorized matrix library. The 
message passing among the parallel nodes is also 
well optimized with the one-sided communication 
of MPI-2. Figure 1 shows a scalability of the 
GSM-TL959L60 on the ES. The computational 
performance of parallel calculation is very well 
from 12 nodes to 60 nodes. The computing 
efficiency with 60 nodes of the ES is about 35% of 
the peak performance. 

 
3) Forecast example of low temperature at Tokyo 

It was a very cold summer in the eastern part of Japan in 2003. The surface temperature at 
Tokyo was very low in August 2003. It was not forecasted well with the operational NWP models. 

We executed the forecast experiment with the initial field at that time. Figures 2 and 3 show the 
5-days forecasts by the operational GSM-T213L40 and the GSM-TL959L60 on the ES. The low 
temperature at Tokyo was well reproduced in the 20 km mesh GSM-TL959L60. The 
GSM-TL959L60 also reproduced the blocking pattern in the east of Japan at 500 hPa height. 
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Fig.2  Forecast example of low temperature at Tokyo. GSM-T213L40 (left), global analysis and radar
observation by JMA (center), GSM-TL959L60 (right). Psea and 24 hours precipitation (upper), surface
temperature and wind (middle), vertical profile of temperature field in the lower atmosphere along 140E
(lower). 

Fig.3  Forecasts of 500 hPa height field. GSM-T213L40 (left), global analysis (center), GSM-TL959L60 (right). 
Forecast times are 72 (upper), 96 (middle), and 120 hours (lower). 
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A COMPARISON OF SUPER-MATSUNO SCHEME
AND DIGITAL FILTERING INITIALIZATIONS IN THE ETA MODEL

Lazar Lazic
Department of Meteorology, University of Belgrade, Serbia (lazar@ff.bg.ac.yu)

 An iterative Matsuno or a "super-Matsuno" style scheme and digital filtering are applied as a filters in
the Eta Model. The both initialization techniques are applied for the model’s adiabatic part only. We are focusing
on the impact of the use of initialization methods in a short-range forecasting environment/time-scale.

The super-Matsuno scheme (Fox-Rabinovitz, 1996) is a generalization of the Euler backward (Matsuno)
scheme (Matsuno, 1966), to include more than one corrector step, that is, to include additional corrector
iterations.  Applying this scheme for the adjustment process in the Eta Model (Lazic, 2000), along with the
backward scheme for the Coriolis terms, we have
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where k  is the iteration number.  These corrector iterations can be continued until convergence takes place,
namely, when
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where ε1 and ε2  are prescribed small values and ||  || is the maximum value norm.

This super-Matsuno-like time differencing scheme with iteration number k=3  is applied to the
adjustment stage of the Eta Model as an ÒinitializationÓ procedure during the Ò-1h backward and +1h forwardÓ
adiabatic integration.

Applying digital filter (Huang and Lynch, 1993) in the Eta Model an adiabatic integration is carried out
backward in time for N  time steps to produce a model state Xd(n) at t=-n∆ t. Here the N-step numerical

integration covers half of the total filter span Ts=2N∆t=4h, which extends from -N∆t to +N∆t. From t=0, the

model then integrated forward in time to +N∆t, giving model variables Xd(n) at t=+n∆t. The digital filter is then

applied to Xd(n), yielding a filtered field 
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Here 
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θc
 is the cutoff digital frequency, which is related to the cutoff period 
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Initial conditions for a sensitivity experiment we ran are those of 0000 UTC 18 January 1987, selected
in an earlier study for their featuring the tropical cyclones Connie and Irma from the Australian Monsoon
Experiment  (AMEX).

A common way to demonstrate the performance of an initialization scheme is to show the time
evolution of the surface pressure and a midlevel vertical velocity at a model grid point.  The surface pressure is
sensitive to noise in a vertically integrated sense, while the midlevel vertical velocity indicates the internal noise.

The time evolution for the first 6 h of the forecast of the surface pressure ps and 500 hPa vertical
velocity ω = dp dt  at a model grid point I=25, J=18, without and with initialization, are shown in Fig. 1
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Fig. 1 Time evolution of: a) surface pressure ps [hPa]; b) 500 hPa vertical velocity ω  [Pa/s]; at a model grid point I=25,
J=18, without and with initialization, during 6 h (120 time steps) of integration.

Uninitialized and initialized sea level pressure fields at the initial time are shown in Fig. 2.  A high
level of noise can be seen on uninitialized map, and no noise to be seen on initialized maps at the same time.

Fig. 2 Uninitialized (a), digital filter (b) super-Matsuno scheme (c) initialized sea level pressure [hPa]; at the initial time
0000 UTC 18 January 1987.

The super-Matsuno style time differencing scheme and digital filtering initializations remove the
spurious high-frequency oscillations from the forecast very efficiently.  After initializations fields are adjusted
and without noise. It results in a lower noise level and a structure in the surface pressure tendency and 500 hPa
vertical velocity at 1 h of integration significantly smoother than in the control case. In the control case fields still
display a high level of noise.

The all integration results with and without initialization after 6 h are very similar.  They are very
similar also after 12 h and later until the end of the 48-h integration performed.  Even so, it is to be expected that
small differences, given that they have resulted from the removal of spurious initial noise have to be beneficial.
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Abstract :  

 
The primary objective of this study is to improve the accuracy of transport schemes in coupled chemistry 
atmosphere models. In the first part of this study, we reproduced the known classical cases of passive 
advection in Cartesian geometry with both unstaggered (A-Grid) and staggered (C-Grid) grids. A series of 
2D validations experiments were performed for 2D passive advection. These experiments have been 
done using idealized flow with known analytical solutions. Numerical results obtained are found to be in 
good agreement with analytical solution and those available in literature. In the second part of this study, 
we solved the full bidimensional equations of the shallow water model with constant Coriolis parameter. 
These governing equations were discretized by semi-Lagrangian and semi-implicit approach. This work 
represents the first step towords introducing conservative semi-Lagrangian transport in a shallow-water 
model.  

 
1. Introduction 
 
The first study concerning the semi-Lagrangian 
scheme seems to be due to André Robert 
(1982). Since then, this method has gained a 
wide acceptance in operational weather forecast 
and tracer transport models. The main 
advantages of this approach are its stability and 
good dispersion proprieties which, when 
combined with the semi-implicit or fully implicit 
discretization of the non-advective terms in 
weather forecast models, yields very robust and 
efficient yet accurate models. For a complete 
review of this method and related issues, see 
Staniforth and Côté (1991). The common 
problem with the semi-Lagrangian method is the 
lack of formal conservation of quantities, such as 
mass, due to interpolation. In fact, the lack of 
conservation of the semi-Lagrangian method 
may be a serious problem for climate studies, 
where many thousands of time steps are needed 
(long simulations). In applications such as the 
chemical transport of reacting species by the 
atmospheric circulation, it is important to ensure 
that the densities remain positive, and that no 
spurious sources and sinks are introduced by 
the transport process, since this could disturb 
the delicate non-linear chemical balance 
equations.  
 
Several studies have been devoted to improve 
this aspect of the method. Such studies can be 
grouped in two principal categories. The first one 
concerns shape-preservation, which will 
guarantee positivity and global conservation 
either by simple renormalization or with an 

ingenious combination of low- and high-order 
interpolations. Both methods have been 
implemented successfully in semi-Lagrangian 
schemes. These corrective procedures were 
developed first by Priestly (1993). His quasi-
conservative algorithm consists in restoring the 
desired quantity whilst minimizing changes to the 
original solution. The second category concerns 
the inherently-conservative semi-Lagrangian 
schemes. It consists in treating the local 
conservation where the total amount inside a 
material surface is constant. This type of 
conservation is relatively expensive and much 
more difficult to obtain. There is a family of 
methods similar to the semi-Lagrangian method 
that enjoys formal conservation at the local level. 
The most elegant algorithm was developed by 
Laprise and Plante (1995) for 1D problem. It 
should be noted that a computationally efficient 
implementation of these algorithms to higher 
dimensions is not a simple task. The extension 
to 3D problem, for example, requires a complex 
re-mapping which quickly becomes impractical 
for advective Courant numbers larger than one. 
Another approach that could be viable in 3D and 
at large Courant numbers and give local 
conservation is the use of the so-called cascade 
interpolation technique in combination with this 
re-mapping. Rancic (1995) has developed such 
a scheme for passive advection. His method 
consists of a natural extension to 2D of a 1D 
mapping and employs a bi-parabolic piecewise 
representation. Recently, Zerroukat and al. 
(2002) developed a Semi-Lagrangian Inherently 
Conserving and Efficient (SLICE) scheme based 
on a Control-Volume (CV) approach. The 
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algorithm developed by those authors uses 
multiple sweeps of a 1D conservative remapping 
algorithm along pre-determined cascade 
directions and was tested for 2D standard 
passive advection.  
As mentioned above, the major task of this work 
is to cure the problem of local conservation. In 
fact, we will be examining the feasibility of 
optimally combining these ideas for the 
development of an in-line transport model which 
will be efficient, conservative, shape-preserving, 
and applicable to non-hydrostatic models as 
well. The main purpose of the paper is to 
describe the principal parts of this investigation 
realized until now. Validation results of 2D 
passive advection using the semi-Lagrangian 
schemes based on the Arakawa C-Grid in 
Cartesian frame are shown in this paper.  
2. The preliminary results: Passive 
advection 
In the first stage, the numerical model was 
validated for the 2D prognostic equation of 
passive advection given by: 
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where the function ( )tyxF ,,  stands for any 
physical variables characterizing the atmos-
phere.  
The first test consists of the classical idealized 
cyclognesis case defined by an initial circular 
vortex with a tangential velocity. Only the results 
will be presented here (see, Zerroukat et al. 
(2002) for details). All results have been 
obtained for the set of parameters: 
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The error measure is defined as the root-mean-
square ( RMS ) difference between the analytical 
solution and the numerical one with the 
departure point calculated numerically or 
analytically.  
 
Table 1 shows the results obtained for the 
cyclognesis problem. These results are 
compared with those obtained analytically and 
available in literature (Zerroukat et al (2002)). 
Figure 1 shows the results obtained with the two 
grids for the classical idealized cyclognesis case 
described above. These results show the 
variation of RMS  as function of time. We note 
that the analytical solution obtained by Zerroukat 
et al. (2002) is completely reproduced.  

 

Table 1: Idealized cyclognesis problem results 
 Error : RMS 

Work Grid  Analytical Numerical 

A-

Grid 

0.074217 Not 

available 

Zerroukat 

et al 

(2002). C-

Grid 

Not 

available 

Not 

available 

A-

Grid 

0.074217 0.082840 Present 

work 

C-

Grid 

0.074217 0.081407 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: The variation of root-mean-square, RMS  

as a function of time [ ]min  t  
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1.  Introduction  
 

 This study examines the role vertical resolution plays in 
simulating the Loop Current Eddie (LCE) formation, 
propagation, and decay in an ocean model.  It is quite 
possible that even the highest vertical resolution models 
published to date are not adequately resolving the large 
vertical gradients associated with the energetic Loop 
Current (LC) and LCEs, nor are adequately resolving near-
bottom processes that may affect the upper ocean 
circulation.   The impacts of vertical resolution are studied 
with the Navy Coastal Ocean Model (NCOM) configured 
to realistically simulate the GoM.  Experiments are run 
with differing vertical resolutions and the eddy behavior in 
the solutions is examined. 
 Results suggest that higher vertical resolution 
simulations produce a more variable eddy field, and 
stronger LCEs.  The propagation pathways appear more 
realistic compared to Topex/Poseidon satellite altimeter 
observations.  In the lower vertical resolution simulation, 
LCEs tend to decay more preferentially in the northwestern 
corner of the GoM resulting in an unrealistically permanent 
anticyclone.  This anticylonic feature is much weaker in the 
higher vertical resolution simulation.   
 

2.  The Model  
 
 The NCOM is a three-dimensional primitive equation 
hydrostatic ocean model developed at the Navy Research 
Laboratory [Martin, 2000].  The model’s hybrid sigma 
(terrain following) and z (geopotential) level vertical 
coordinate is useful for simulating upper ocean processes in 
domains encompassing both deep ocean basins and very 
shallow shelves.  The NCOM is set up to simulate the 
entire GoM and Caribbean north of Honduras (15.55°N) to 
80.6°W with 1/20° between like variables on the C-grid, 20 
sigma levels above 100 m and either 20 or 40 z-levels 
below 100 m to a maximum depth of 4000 m [Morey et al., 
2003].  The model is forced by discharge from 30 rivers, 
transport through the open boundary (with monthly 
climatology temperature and salinity) yielding a mean 
transport through the Yucatan Strait of approximately 27 
Sv (106m3s-1), and monthly climatology surface heat and 
momentum flux.  A surface salinity flux has the effect of 
uniformly evaporating an amount of water at a rate equal to 

the sum of the annual average discharge rates of the 30 
rivers.   The model is run for 10 years for each experiment, 
with the last seven years used for analysis. 
 

3.  Results 
 

 The variance of the model sea surface height (SSH) 
shows highest values in the region of the LC retroflection 
and LCE separation (Fig. 1).  A region of high SSH values 
stretch westward from the LC across the GoM near the 
latitude band of 23°N to 28°N, showing the preferred 
westward propagation pathways of the shed LCEs.  The 60 
level experiment shows much larger values of the SSH 
variance, with a more pronounced maximum near the LC 
retroflection, and a less pronounced secondary maximum in 
the northwestern corner of the GoM than the 40 level 
experiment.   
 The mean SSH (surface deviation from a resting level) 
maps from the two GoM experiments both show a high in 
the northwestern corner of the GoM, indicating a preferred 
location for the anticyclonic LCEs to reside.  The 40 level 
experiment has relative maxima here of over 30 cm, 
compared to less than 20 cm for the higher vertical 
resolution 60 layer experiment.  The mean SSH scaled by 
the standard deviation is less than 1.0 in the 60 level 
experiment, indicating that the anticyclone is not a 
permanent feature at this location.  However, in the 40 
level experiment, the SSH mean scaled by the standard 
deviation is greater than 3.0 in the northwestern GoM 
suggesting a nearly permanent anticylonic feature exists 
here.  Although an anticyclone is evident in the mean 
dynamic topography from historical data, observations do 
not support that this is a permanent feature.  Thus, the 
higher vertical resolution experiment seems to simulate a 
more realistic eddy field in the western GoM. 
 The sea level variability across a line coincident with a 
Topex/Poseidon satellite altimeter (T/P) ground track is 
compared between NCOM GoM simulations and T/P data 
(Fig. 3).  LCEs cross this track as they propagate westward 
from the Loop Current.  The sea surface height variance 
versus latitude plot gives some indication of the eddy 
strength and preferred propagation path.  The results show 
weaker than expected sea level variability across this track 
in the 40 level experiment, and much better agreement in 
the near-twin experiment with 60 vertical levels.   

Section 3 2004-07-26 Page 17 of 28



 
 
Fig. 1. Variance (cm2) of the model SSH from the 40 level 
experiment (top) and the 60 level experiment (bottom).  The 
contour interval is 50 cm2. 
 
 
 

  
 
Fig. 3. Right: Variance of the sea surface height versus 
latitude for seven years of data across T/P ground track 128 
shown highlighted at left.  Black curve: Topex/Poseidon 
altimeter. Green curve: 40 level simulation.  Red curve: 60 
level simulation.  
 
 

 
 
Fig. 2. Model mean SSH (cm) from the 40 level experiment 
(top) and the 60 level experiment (bottom).  The contour 
interval is 5 cm and negative values are indicated by dotted 
contour lines. 
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Computing Centre (CC) AGCM uses uniform 72 degrees on longitude and 46 degrees 
on a latitude horizontal grid for single processor computer. Program was modified for high 
performance cluster.  

Global area was distributed between processors (domain decomposition) on meridians 
at parallel version of the program.  

Advantage of this way is that all this geographic areas are similar, and the same 
algorithm of calculations can be used on all processors. Lack of this approach is that each of 
areas borders on all by others (in points of northern and southern poles). It results that the data 
on the previous temporary layer are necessary for receiving for calculations of points near to 
poles from all other processors, that assumes enough amount of information interchanges 
between processors. 

The information interchanges between processors on each time layer (sublayer) are 
necessary only at performance advective steps. All areas are identical with the computing 
point of view, and the amount of the information, transmitted between processors, is not great, 
namely, those parts of numerical arrays are transferred only which correspond to boundary 
points of subareas. It provides high efficiency of algorithm.  

The library MPI was used as a means of parallel program realization.  
The opportunity of splitting on various number of subareas is stipulated in parallel 

variant of the program, depending on quantity of the involved processors. The data received 
on the single processor computer are used as initial. The converter program is created for 
compatibility with the available data.  

The basic properties of the given parallel program briefly can be formulated as 
follows: 

1. Amount of duplicated operations is small, because all calculations will be carried 
out independently, and the group operations are effectively realized by means MPI. 

2. Loading on processors is balanced, as the area is divided into subareas identical 
each other. 

3. Time of is small, as the volumes of the information, sent at exchanges, are small, 
and the time of calculations between exchanges is rather great. 

4. The memory of processors is used effectively, as the basic volumes of the 
information - file of results and all preliminary files - are allocated on processors. 

The test calculations on high-efficiency Computer Center cluster. (2 - 8 processors) 
are carried out. The good agree of results for single processor and parallel programs is 
received. The comparison of times of calculations has shown (fig. 1), that on 4 processors the 
acceleration at 3.81 times is received in comparison with the single processor program. It 
corresponds to efficiency 95 %, that allows to make a conclusion about the good parallel 
characteristics of the developed program. 

It is necessary to study other ways of considered area splitting: splitting along 
geographical parallels, and splitting combining both ways. Also it is necessary to provide an 
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opportunity of transition to more detailed grids, that is required for coupling of regional 
models with global. 

This work is supported by RFFI. 

Figure 1. Dependence of run acceleration (lower line) from processors numbers 
(horizontal axes) 
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Tests of a Z-Coordinate Nonhydrostatic Model Including Physical
Processes

J. Steppeler*, S. Janjic**, H. W. Bitzer***, P. Prohl*, U. Schättler*
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Offenbach, Frankfurterstr. 135

Z-Coordinate numerical models of the atmosphere have the advantage of representing the
atmosphere at rest properly and therefore justify the expectation of improved forecasts of
orographically induced winds. An example for such a Z-coordinate model is the etamodel,
which is based on the step orography. The step approach does not allow for a proper
representation of the meso-scale flow over smooth and well resolved mountains. This problem
was pointed out by Gallus and Klemp (2000). Steppeler et al (2002a) showed that the problem
can be solved by formulating lower boundaries using a representation of the mountains by
linear splines rather than the step approach. On this basis a Z-coordiante version of the model
LM (see Steppeler et al. (2002b)) was developed and tested extensively in idealised situations
using bell shaped mountains and the orography of Scandinavia.

A physical parameterisation package was created by using the parameterization package for
the terrain following model LM and developing an interface between the z-levels and the
terrain following levels. The tendencies of the physics routine in the terrain following grid are
interpolated by cubic splines to the z-representation.

A number of idealised  tests were done. A bell shaped mountain of height 2000 m was used
with an atmosphere being initially at rest. Different circulations developed at night and day,
corresponding to mountain and valley winds. In comparison, the model version using terrain
following coordinates produced a mountain wind even without radiation being switched on.
When a homogeneous velocity field of 10 m/sec is used with the same mountain, a warming
or cooling is produced in the wake of the mountain, leading to a rotational motion
perpendicular to the axis of the main motion. With radiation switched off the temperature in
the wake of the mountain is unchanged.

Fig. 1 shows a test where the step type z-coordinates had a disadvantage as compared to
terrain coordinate models. A shallow mountain of 400 m height is used with a homogeneous
velocity field of 10 m/sec. The cloud water field in a vertical cross section through the centre
of the mountain and the precipitation field is shown. Due to the proper treatment of the
gravitational wave, these results come out in the expected way.
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Fig. 1: Cloud water (kg/kg) on a cross section through the centre of the mountain (top) and
precipitation (mm) for the bell shaped mountain of height 400 m in a homogeneous velocity field.
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FAST ALGORITHM OF HARMONIC ANALYSIS OF REAL-VALUED FUNCTIONS ON A

SPHERE

Vyacheslav  I. Tsvetkov,

Hydrometeorological Center of Russia, tsvetkov@rhmc.mecom.ru

Let us consider a sphere of unit radius centered at the origin. Let us take the

coordinate system using the following independent variables: co-latitude  θ  (θ = π/2 - ϕ,

where ϕ  is the latitude), longitude  λ, and radial coordinate ρ.   We  introduce the notation

x= cosθ.

Let us consider the Jacobi polynomials on the interval [-1, 1]. They are orthogonal

with a weight function h(x) = (1- x)α(1+ x)β (α >-1, β> -1) [1,2]. The integrability of function

h(x)  is  provided by the conditions α  > -1, β  > -1.

At  α = β  the Jacobi polynomials ( )( )xPn
αα ,  turn into the so-called ultraspherical

polynomials [2], which satisfy the hypergeometric equation

( ) ( ) ( ) ������

�

=+++′+−′′− \QQ\[\[ αα .                                    (1)

In this case, the weight function h(x) is even and the ultraspherical polinomials

( )( )xPn
αα ,  will be even or odd depending on eveness or oddness of its order n, that is,

( )( ) ( ) ( )( )   . 1- ,n, xPxP nn −= αααα

Let  α = ν - 1/2 (ν >- 1/2). According to [2], let us introduce the following notation and

normalization:   
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Note the following important particular cases of ultraspherical polynomials.   The equation

0221 =+′−′′


 − nTnnTxnTx ,                                                 (4)

follows from (2) at ν = 0. Its solutions are the first kind Chebyshev polynomials

( ) ( )( )xPxT nn
0= .

At  ν = 1 Eq. (2) reduces to the equation   

( ) ( ) 0231 2 =++′−′′− nnn UnnUxUx ,                                                (5)
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the solution of which are the second kind Chebyshev polynomials ( ) ( )( )xPxU nn
1= . The third

particular case at  ν = 1/2   gives the solution of Eq. (2), which is called the Legandre

polynomials, Ln(x) = ( )( )xPn
2/1 .

Note that ( )( )θν cosnP  can be represented in the form of the Fourier expansion in

orthogonal first-kind Chebyshev polynomials  [2]:

( )( )
( )( ) ( )

( ) ( )

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
 +−

+

+−−+=

=

 n  evenfor                                       2
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 ...
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θγγ
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                     (3)

       

where γn  are the coefficients calculated by the following formulas
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 −+
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n

n
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It is easy to see that the first-kind Chebyshev polynomials are cosine polynomials.

Hence, the associated Legandre functions can be expressed through the trigonometric

polynomials. In this case, the real-valued function   f(θ, λ), determined on the surface of a

sphere Ω (0 ≤ θ ≤ π, 0 ≤ λ ≤ 2π) and integrable with some weight (that is,  f(θ, λ) ∈ L2(Ω)), can

be expanded in  Fourier series using the fast Fourier transformation algorithm [3]. When this

algorithm is used to calculate the Fourier coefficients over latitude and over the whole globe,

the number of arithmetic operations becomes as small as O(N*lnN)   and  0(N2*lnN),

respectively.  
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An Isentropic Model of the Atmosphere

Tim Woollings and John Thuburn, University of Reading, UK
swr01tjw@met.rdg.ac.uk

The isentropic middle atmosphere model of Gregory (1999) has been extended down
to the Earth’s surface incorporating a new boundary formulation. The model is based
on the shallow water model of Thuburn (1997) and predicts PV, divergence δ and isen-
tropic density σ = ρ∂z

∂θ
on a hexagonal-icosahedral horizontal grid with an isentropic

vertical coordinate. Here we briefly describe the model, in particular the lower boundary
formulation, and present some early results.

One of the major difficulties in isentropic modelling of the atmosphere is that the
coordinate surfaces intersect the ground. In the past attempts to overcome this problem
have been based upon two key techniques: the idea of using extrapolated underground
values to calculate finite differences near the ground, and the massless layer approach
whereby after hitting the ground an isentropic model layer is extended along the surface
with negligible mass.

Our formulation could be considered as a combination of the two. We use a general
vertical coordinate η which is equal to the potential temperature θ above ground (see
figure 1). When a level hits the ground it retains the same coordinate value η. Two
different density fields are then defined: σ is the standard isentropic density above ground
and continues underground with non-zero values. σ̂ is equal to σ everywhere above ground
and goes to zero at the ground in the same way as in the massless layer method. Initial
values for σ, as well as PV and δ, are extrapolated along isentropes from the surface.
Both densities the evolve prognostically according to the mass conservation equation.
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η

η
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η

η
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η

M i+1i+1
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Figure 1: A schematic of the lower boundary scheme used in the model. The boundary condition is
a specified geopotential Φs and the Montgomery potential M in the lowest massy level is calculated
from this as shown for the furthest right column. The arrows indicate directions of integration. p is the

pressure, π = cp

(

p

p0

)κ

and the other symbols are defined in the text.

The real atmosphere is therefore represented by the non-zero σ̂ region and the under-
ground values of σ are there simply as a numerical device used to represent the ground
smoothly. This is done in an attempt to avoid another common problem with isentropic
models, described by Randall (2000) and summarised here. In isentropic coordinates
the horizontal pressure gradient force is the Laplacian of the Montgomery potential M

and this is calculated by integrating the pressure up from the surface according to the
hydrostatic equation Mθ = π(p). However with discrete isentropic levels intersecting the
ground the surface θ distribution is not smooth leading to noise in M at all levels above
an intersection point.
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Figure 2: On the left Northern hemisphere PV on the 307K level at day 8 of the baroclinic wave and
on the right the global surface θ at the same time. Horizontal resolution is equivalent to T50.

In our formulation we hope to solve this problem by using the underground σ values
to interpolate vertically for the exact location of the ground in the η coordinate framework
so that the surface temperature distribution is smoothly defined. This interpolation is
implemented simply by defining M in the lowest massy level using the formula in Figure
1, and M at all levels is then calculated by integrating from here. Note that below ground
both this integral and the integral of density to obtain pressure propagate information
downwards. No information from below ground propagates upwards to contaminate the
real above-ground flow. This however means that in the unphysical below ground region
there is no gravity wave feedback mechanism and so the region is unstable. The region
has no physical meaning and so the instability is controlled by simply relaxing the flow
back towards the initial conditions in such a way that the surface winds are unchanged.
The underground region provides for smooth interpolation of surface conditions and is
carefully controlled so as to be stable and not to interfere with the real atmospheric flow.

The model has been run successfully in an adiabatic state on simulations such as
the development of a baroclinic wave lifecycle as shown in Figure 2. However the model
has had difficulty simulating the decay phase of the wave when θ surfaces become tightly
packed at the surface front; in the future it is planned to introduce a simple representaion
of diabatic processes in an attempt to improve this.
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Implementation of the Cylindrical Equidistant Projection for
the Non-Hydrostatic Model of the Japan Meteorological Agency

Yosuke Yamazaki1 and Kazuo Saito2

1Advanced Earth Science & Technology Organization
2Numerical Prediction Division, Japan Meteorological Agency

e-mail: y-yamazaki@naps.kishou.go.jp

The Non-Hydrostatic Model (NHM) is a regional grid-point model which is based on the finite difference
scheme and will replace current operational regional hydrostatic spectral model, the Mesoscale Spectral
Model (MSM) of the Japan Meteorological Agency (JMA). Recently, the importance of developing non-
hydrostatic global model has been increasing with the advance of the computer technology. One of the
easiest ways to modify a grid-point model from a regional model to a global one is to implement the latitude-
longitude (lat-lon) coordinate. Saito (2001)[1] made a global non-hydrostatic model by implementing the
Cylindrical Equidistant (CE) projection for NHM together with a special treatment for the grid points near
the poles. A preliminary 24 hours simulation with the horizontal resolution of 1.5 degrees for latitude and
longitude was carried out for a global domain using the global analysis (GANAL) of JMA as the initial
condition. Although the test run reproduced well the synoptic scale motions of the atmosphere, it would
be difficult to perform simulations with higher horizontal resolution because the model was based on a
previous version of NHM which was not parallelized. The implementation of the CE projection supported
only the semi-implicit scheme (HI-VI scheme), which treats the fast modes (sound waves) implicitly in both
horizontal and vertical directions.

The CE projection has been implemented again for the latest version of NHM, which is fully parallelized
by using the MPI library and includes many new features such as the Kain-Fritsch cumulus parameterization
and higher-order advection schemes[2]. The split-explicit scheme (HE-VI scheme) which treats the fast
modes explicitly in the horizontal direction and implicitly in the vertical direction is also supported, together
with a newly developed time-splitting scheme for advection terms[3].

NHM is designed to select a type of map projection by its runtime option, and have supported 3 confor-
mal projections; the Polar Stereographic projection, the Lambert conformal projection, and the Mercator
projection. The governing equations of NHM are formulated for the arbitrary orthogonal curvilinear coor-
dinate system on the sphere with the horizontal scaling factors of map projection, mi defined by

dsi =
dxi

mi
for i = 1, 2, (1)

where dsi is the length in the i-th direction when xi varies with dxi. Note that m1 = m2 in the conformal
projections. If we take 1 and 2 in the longitudinal and latitudinal direction respectively, these map factors
take the form;

(m1,m2) =
(

1
a cos φ

,
1
a

)
=

1
a

(
1

cos φ
, 1

)
(2)

for the lat-lon coordinate, and

(m1,m2) =
(

cosφ0

cos φ
, 1

)
(3)

for the CE projection, where a is the radius of the Earth, φ the latitude, and φ0 the standard latitude. In
case of φ0 = 0, the CE projection is equivalent to the lat-lon coordinate except for its coordinate dimension;
it is length in the CE projection while angle in the lat-lon coordinate.

To test our implementation of the CE projection, three runs of 18 hours forecast were performed on a
HITACHI SR8000 distributed memory parallel supercomputer. The configuration of test runs is summarized
in Table 1. Figure 1 shows a result of two runs with same configuration except for their map projection.
The CE projection (Fig. 1b) reproduced the reference result with the Lambert conformal projection (Fig.
1a). Another preliminary run for large domain is also performed using GANAL of JMA as the initial and
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boundary conditions (Fig. 2). Surface pressure pattern is well simulated, and the difference of domain
averaged surface pressure between simulation and GANAL is within 1 hPa in the simulation period (18
hours).

Although the implementation of the CE projection was completed, two steps still remain to run NHM
as a global model; re-implementation of the periodic boundary condition, and treatment for the grid points
near the poles. Furthermore, from the view-point of computational efficiency, some kind of numerical
technique to avoid the pole problem should be implemented; filtering longitudinal high-frequency modes
near the poles, or the semi-Lagrangian scheme, and so on.

Table 1: Configuration of the test runs.
Name of the run LM CE1 CE2
Projection type Lambert conformal Cylindrical equidistant
Standard latitude(s) 30N, 60N 35.5N 0N
Standard longitude 140.0E −
Center of the domain 133E, 35.5N 140E, 0N
Grid number 289× 231× 40 121× 121× 40
Horizontal resolution 10 km at the standard lat. 1 deg.
Vertical resolution 40 ∼ 1180 m (40 levels)
Initial condition Meso 4D-Vara) GANAL
Boundary condition RSMb) forecast GANAL

a) 4 dimensional variational data assimilation system for MSM (10 km mesh)
b) Regional Spectral Model of JMA (20 km mesh)

(a) Run-LM
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Figure 1: Sea-level pressure [hPa] (contour) and
3 hours precipitation [mm/3hours] (shaded
contour) of 18 hours forecast; (a) Lambert
conformal projection, and (b) CE projection.
Initial time is 06UTC, 8 Aug., 2003.
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Figure 2: Same as in Fig. 1 but for large domain
(Run-CE2).
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